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Summary

This paper presents results from an investigation
to determine the thrust vectoring capability of sub-
scale, two-dimensional convergent-divergent exhaust
nozzles installed on a twin-engine general research
fighter model at angles of attack from —2° to 35°.
Pitch thrust vectoring was accomplished by down-
ward rotation of nozzle upper and lower flaps. The
effects of nozzle sidewall cutback were studied for
both unvectored and pitch-vectored nozzles. A single
cutback sidewall was employed for yaw thrust vector-
ing. This investigation was conducted in the Langley
16-Foot Transonic Tunnel at Mach numbers ranging
from 0 to 1.20. High-pressure air was used to sim-
ulate the jet exhaust and provide values of nozzle
pressure ratio up to 9.

Nozzle sidewall cutback caused little or no effect
on peak static nozzle performance for both unvec-
tored and pitch-vectored nozzles. Thrust-minus-drag
performance for the unvectored nozzle configurations
varied less than 1 percent at subsonic speeds, thus
showing the relative insensitivity of installed perfor-
mance to nozzle sidewall cutback. At static condi-
tions, resultant pitch vector angle was always greater
than the geometric pitch vector angle for the three
configurations tested. The increment in either the
force or moment coefficient that resulted from pitch
or yaw vectoring remained essentially constant over
the entire angle-of-attack range for all Mach numbers
tested. Longitudinal control power was a function of
nozzle pressure ratio and Mach number. Powered
controls were very effective at low Mach numbers,
but their effectiveness decreased as Mach number in-
creased because of a reduction in thrust. Longitudi-
nal control power from thrust vectoring was greater
than that provided by aerodynamic controls at low
speeds. Negative yaw vector angles were generated at
underexpanded nozzle operating conditions, but pos-
itive yaw vector angles were found at overexpanded
nozzle operating conditions for a nozzle using a single
cutback sidewall to produce yaw thrust vectoring.

Introduction

The next generation of fighter aircraft will be
a versatile class of vehicles designed for operation
over a wide range of flight and combat conditions.
Future fighter aircraft requirements will probably
include transonic and supersonic cruise capability,
short takeoff and landing (STOL) features, high turn
rates, and maneuvering at both conventional and
high angles of attack. Studies have shown that signif-
icant advantages in air combat are gained with the
ability to perform transient maneuvers at high an-
gles of attack including brief excursions into post-

stall conditions. (See refs. 1 to 5.) Current fighters
are somewhat limited in their angle-of-attack enve-
lope because inadequate aerodynamic control power
exists at high angles of attack.

Augmenting existing aircraft control systems with
multiaxis thrust vectoring could greatly enhance the
effectiveness of fighter aircraft and allow them to ex-
ploit a much-expanded angle-of-attack envelope. If
current flight capabilities are sufficient, augmenting
existing fighter aircraft control systems could allow
the designer the option of reducing empennage size,
thus reducing total airframe drag. In either case, im-
proved low-speed, high-angle-of-attack performance
and STOL capability are likely benefits of the use of
thrust vectoring (refs. 6 to 8).

A number of investigations conducted at both
static (wind-off) and forward speeds have verified the
effectiveness of multifunction nozzles for pitch thrust
vectoring. (For example, see refs. 9 to 14.) More
recent studies have evaluated static and wind-on
effects of lateral or yaw thrust vectoring on installed
nozzle performance (refs. 9, 10, and 14 to 16).

This paper presents results from an investigation
to determine the thrust vectoring capability of sub-
scale, two-dimensional convergent-divergent exhaust
nozzles installed on a twin-engine general research
fighter model at angles of attack from —2° to 35°.
Pitch thrust vectoring was accomplished by down-
ward rotation of nozzle upper and lower flaps. The
effects of nozzle sidewall cutback were studied for
both unvectored and pitch-vectored nozzles. A single
cutback sidewall was employed for yaw thrust vector-
ing. This investigation was conducted in the Langley
16-Foot, Transonic Tunnel at Mach numbers ranging
from 0 to 1.20. High-pressure air was used to sim-
ulate the jet exhaust and provide values of nozzle
pressure ratio up to 9.

Symbols

All model longitudinal forces and moments are
referred to the stability axis system, and all lateral
forces and moments are referred to the body axis
system. The model moment reference center was
located 1.75 in. above the model centerline at fuselage
station 36.06 in. (FS 36.06) which corresponds to
0.25¢. A discussion of the data reduction procedure
and definitions of the aerodynamic force and moment
terms and the propulsion relationships are presented
in the appendix. Further details of the data reduction
and calibration procedures used herein can be found
in references 7 and 18. The symbols used in the
computer-generated tables are given in parentheses.
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total aft-end side-force
coefficient, Cy = Cy, at
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gravitational constant,
32.174 ft/sec?

length from nozzle attach-
ment station (FS 66.30) to
nozzle exit, used in coordi-
nate system of figure 6(a)

length from moment ref-
erence center to nozzle
throat, in.

length from moment refer-

ence center to quarter-chord

of horizontal tail mean
geometric chord, in.

length from nozzle throat
to nozzle exit, used in
coordinate system of
figure 6(b), in.

free-stream Mach number

nozzle pressure ratio,
Pt,j/Px OT Pt.j/Pa

nozzle pressure ratio re-
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flow
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ambient pressure, psi
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average static pressure at
external seal at FS 48.25,

psi

average static pressure at
external seal at F'S 66.25,

psi

average internal static
pressure, psi

average jet total pressure,
psi

free-stream static pressure,
psi

free-stream dynamic pres-
sure, psi

gas constant, 1716 ft?/
sec’-°R

wing reference area,
664.4 in?

horizontal tail area, in2
average jet total tempera-
ture, °R

volume coefficient (see the
appendix)

ideal weight-flow rate,
1bf/sec

measured weight-flow rate,
1bf/sec

axial distance measured
from nozzle attachment sta-
tion (F'S 66.30), positive
downstream, used in coor-
dinate system of figure 6(a),
in.

axial distance measured
from nozzle throat, positive
downstream, used in coor-
dinate system of figure 6(b),
in.

lateral distance measured
from model centerline,
positive to left (outboard)
looking downstream, used
in coordinate system of
figure 6(a), in.



Yy lateral distance measured
from nozzle centerline,
positive to left (outboard)
looking downstream, used
in coordinate system of
figure 6(b), in.

o (ALPHA) angle of attack, deg

5 ratio of specific heats,
1.3997 for air

op resultant pitch vector angle,
tan 7,1;1, eg

Sup geometric pitch vector
angle measured from nozzle
centerline, positive for
downward deflection angles,
deg

by resultant yaw vector angle,
tan rj— eg

Abbreviations:

A/B afterburning

BL butt line, in.

C-D convergent-divergent

FS fuselage station (axial
location described by
distance in inches from
model nose)

STOL short takeoff and landing

WL waterline, in.

2-D two-dimensional

Apparatus and Procedure

Wind Tunnel

This investigation was conducted in the Lang-
ley 16-Foot Transonic Tunnel, a single-return atmo-
spheric wind tunnel with a slotted octagonal test
section and continuous air exchange. The wind tun-
nel has variable airspeeds up to a Mach number of
1.30. Test-section plenum suction is used for speeds
above a Mach number of 1.05. A complete descrip-
tion of this facility and operating characteristics can
be found in reference 17.

Model and Support System

Details of the general research twin-engine fighter
model and wingtip-mounted support system used in
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this investigation are presented in figure 1. A pho-
tograph of the model and support system installed
in the Langley 16-Foot Transonic Tunnel is shown in
figure 2. A sketch of the wing planform geometry is
presented in figure 3.

The wingtip model support system shown in
figure 1 consisted of three major portions: the
twin support booms, the forebody (nose), and the
wing/centerbody. These pieces made up the non-
metric portion (that portion of the model not
mounted on force balance) of the twin-engine fighter
model. The fuselage centerbody was essentially rect-
angular in cross section and had a constant width
and height of 10.00 in. and 5.00 in., respectively.
The four corners were rounded by a radius of 1.00 in.
The maximum cross-sectional area of the centerbody
(fuselage) was 49.14 in?. The support system fore-
body (or nose) was typical of a powered model in that
the inlets were faired over. The wings were mounted
above the model centerline in a high position that
is typical of many current fighter designs. The wing
had a 45° leading-edge sweep, a taper ratio of 0.5,
an aspect ratio of 2.4, and a cranked trailing edge
(fig. 3). The NACA 64-series airfoil had an airfoil
thickness ratio of 0.067 near the wing root. From BL
11.00 to the support booms, however, wing thickness
ratio increased from 0.077 to 0.10 to provide ade-
quate structural support for the model and to permit
the transfer of compressed air from the booms to the
model propulsion system.

The wingtip support system has the unique fea-
ture of being able to rotate the wing with respect to
the support booms. This allows testing of models to
high angles of attack while keeping the model near
the tunnel centerline. A detailed description of the
wingtip support system is given in reference 17.

The metric portion of the model aft of FS 44.75,
supported by the main force balance, consisted of
the internal propulsion system, afterbody, tails, and
nozzles. The afterbody lines were chosen to provide a
length of constant cross section aft of the nonmetric
centerbody and to enclose the force balance and
Jet simulation system while fairing smoothly down-
stream into the closely spaced nozzles. The afterbody
shell from FS 48.25 to 66.25 was attached to an af-
terbody force balance that was attached to the main
force balance (fig. 1). The main force balance in turn
was grounded to the nonmetric wing/centerbody sec-
tion. The nozzles were attached directly to the
main force balance through the propulsion system
piping. Three clearance gaps (metric breaks) were
provided between the nonmetric and individual met-
ric portions (afterbody and nozzles) of the model at
FS 44.75, 48.25, and 66.25 to prevent fouling of the
components upon each other. A flexible plastic strip



inserted into circumferentially machined grooves in
each component impeded flow into or out of the in-
ternal model cavity (fig. 1).

In this report, that section of the model aft of
FS 48.25 is referred to as the total aft end (which
includes afterbody and nozzles). That section of
the model from FS 48.25 to 66.25 is referred to as
the afterbody, and that section aft of FS 66.25 is
considered the nozzles. An adjustment to the drag
results of the main balance was made for the section
of the model from FS 44.75 to 48.25. (See the
appendix.)

Twin-Jet Propulsion Simulation System

The twin-jet propulsion simulation system is
shown in figure 1. An external high-pressure air sys-
tem provided a continuous flow of clean, dry air at a
controlled temperature of about 70°F at the nozzles.
This high-pressure air was brought into the wind-
tunnel main support strut where it was divided into
two separate flows and passed through remotely op-
erated flow-control valves. These valves were used to
balance the total pressure in each nozzle.

The divided compressed airflows were piped
through the wingtip support booms, through the
wings, and into the flow-transfer (bellows) assem-
blies (fig. 1). A sketch of a single flow-transfer bel-
lows assembly is shown in figure 4. The air in each
supply pipe was discharged perpendicularly to the
model axis through six sonic nozzles equally spaced
around the supply pipe. This method was designed
to minimize any transfer of axial momentum as the
air passed from the nonmetric portion to the met-
ric portion of the model. Two flexible metal bel-
lows were used as seals and served to compensate for
the axial forces caused by pressurization. The cav-
ity between the supply pipe and bellows was vented
to model internal pressure. The airflow then passed
through the tail pipes into the transition sections,
through choke plates (30 percent of the tail pipe open
area), to the instrumentation or charging sections,
and then to the exhaust nozzles. (See fig. 1.)

Exhaust Nozzles

The two-dimensional convergent-divergent (2-D
C-D) nozzle is a nonaxisymmetric exhaust system in
which a symmetric contraction and expansion pro-
cess takes place internally in the vertical plane. Basic
nozzle components consist of upper and lower flaps
to regulate the contraction and expansion process
and flat nozzle sidewalls to contain the flow laterally.
The flap inner-surface geometry (on full-scale hard-

ware) can be varied or altered by actuators so that
(1) the engine power setting can be changed by vary-
ing the throat height and (2) the expansion surface
angle (the flat surface downstream of the throat) can
be varied for optimum expansion of the exhaust flow
(ref. 19). The 2-D C-D nozzle can be designed to vec-
tor the exhaust flow up or down (in the pitch plane)
by rotating the upper and lower flaps independently.

The subscale 2-D C-D nozzle models tested during
this investigation are shown in figure 5. These noz-
zles are fixed-geometry representations of a variable-
geometry nozzle at dry power and partial afterburn-
ing (A/B) power settings. The nozzle models were
sized to the twin-engine wingtip-supported propul-
sion simulator by selecting values of the ratio of to-
tal nozzle throat area to maximum fuselage cross-
sectional area (2A4¢/Amax) that were representative
of current twin-engine high-performance aircraft in-
stallations. The values of nozzle internal expansion
ratio selected for testing were based on typical cur-
rent, full-scale, mixed-flow turbofan cycles. A sum-
mary of important geometric parameters is given in
the following table:

Power

setting [Ag, in. Ae/At 2A; /Amax AR (NPR)des
Dry 2.69 1.16 0.11 3.45 3.46
A/B 3.92 1.24 .16 2.39 4.17

Various combinations of nozzle flap and sidewall ge-
ometry were examined as seen in figure 5. Three ba-
sic upper and lower flap arrangements were tested:
unvectored flaps, pitch-vectored A/B flaps, and un-
vectored dry power flaps. The pitch vectoring was
produced by a simple 15° downward rotation of the
unvectored A /B nozzle divergent flaps. The sidewall
geometry variations used with each of the upper and
lower flap arrangements are indicated in figure 5(b).
The A/B sidewalls were designed to fair smoothly
with the external lines of the A/B flaps. When paired
with the dry power flaps, the A/B sidewalls provide
small external flow fences. Conversely, the dry power
sidewall (designed to fair with the dry power flaps)
allows some internal flow ventilation when combined
with the A/B flaps.

The effects of sidewall cutback were investigated
on both the unvectored and pitch-vectored A/B flaps
as seen in figure 5(b). The baseline or 100-percent
A /B sidewall provided full exhaust flow containment
over the entire divergent flap of the unvectored noz-
zle. The 50- and 25-percent sidewall cutbacks pro-
vided one-half and one-quarter containment, respec-
tively, of the unvectored A/B divergent flap length.

5



Because sidewall base areas were held constant,
sidewall boattail angle varied with sidewall cutback
as shown in the view labeled “Top view.”

The sidewall variations discussed in the previous
paragraphs refer only to the outboard sidewall of
each nozzle. For the closely spaced twin-nozzle ar-
rangement of the present investigation, a common in-
board sidewall (splitter plate) is more practical than
individual sidewalls. The splitter plate geometry was
constant throughout the entire investigation. This
splitter plate represented two baseline A/B sidewalls
(with 100-percent containment) located back to back.
The splitter plate is identified in the sketch of fig-
ure 5(a) and the photograph of figure 5(c).

Yaw vectoring was provided by an asymmetric
combination of sidewall lengths on the A/B nozzle
flaps. A 100-percent A/B sidewall was located out-
board on the left nozzle, and a 25-percent A/B side-
wall was located outboard on the right nozzle. This
combination of sidewall cutback represented a yaw-
vectoring concept called the translating sidewall con-
cept. In a full-scale application, a single sidewall
would translate, whereas the opposite sidewall re-
mained in the full containment position. This lat-
eral asymmetry would produce a yaw vector an-
gle whose magnitude can be varied by varying the
amount of sidewall translation. A more detailed dis-
cussion of this yaw-vectoring concept is contained in
reference 14.

Instrumentation

Forces and moments on the metric portions of the
model were measured by two six-component strain
gauge balances. The main balance measured forces
and moments resulting from nozzle gross thrust and
the external flow field over that portion of the model
aft of FS 44.75. The afterbody balance measured
forces and moments resulting from the external flow
field over the afterbody from FS 48.25 to 66.25. This
twin balance arrangement permits the separation of
model component forces for data analysis.

External static pressures were measured at eight
points in the seal gap at the first metric break
(FS 44.75). All orifices were located on the non-
metric centerbody and spaced symmetrically about
the model perimeter. An additional five orifices
positioned about the right side of the model mea-
sured seal gap pressures at the second metric break
(FS 48.25). The third and final set of seal pressures
was measured by two pairs of surface taps, each an
equal distance fore and aft of the third metric break
(FS 66.25).

In addition to these external pressures, two in-
ternal pressures were measured at each metric seal.
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These pressure measurements were then used to cor-
rect measured axial force and pitching moment for
pressure area tares as discussed in the appendix.

Chamber pressure measurements made in each
supply pipe, upstream of the six sonic nozzles (fig. 4),
were used to compute mass-flow rates for each noz-
zle and were also used to compute tare forces. In-
strumentation in each charging section consisted of
a stagnation-temperature probe and a total-pressure
rake. Each rake contained four total-pressure probes.
(See fig. 5.) Nozzle total pressure was determined
from these measurements.

External and internal static pressures were mea-
sured on the two A/B power nozzles. The orifice lo-
cations are shown in figure 6. External pressures were
measured on the right nozzle (looking upstream).
The external orifices were arranged in three rows
along the top surface of the convergent and diver-
gent flaps of the nozzle. Internal static pressures were
measured on the left nozzle (looking upstream). The
internal orifices were located only along the divergent
flap, starting at the nozzle throat. A single row of ori-
fices was placed along the centerline of the top flap,
and three rows of orifices were placed along the sur-
face of the bottom flap. All pressures were measured
with individual pressure transducers. Data obtained
during each tunnel run were recorded on magnetic
tape. Typically, for each data point, 50 frames of
data were taken over a period of 5 sec and the aver-
age was used for computational purposes.

Tests

This investigation was conducted in the Langley
16-Foot Transonic Tunnel at Mach numbers of 0,
0.15, 0.60, 0.90, and 1.20 and at angles of attack from
—2° to 35°. The nozzle pressure ratio varied from
1.0 (jet off) to 9.0 depending upon Mach number.
Most model configurations were tested at angles of
attack from —2° to 18°. Selected configurations were
subsequently tested over an angle-of-attack range
from about 16.6° to 35°. This was accomplished
by presetting wing incidence through rotation of the
wings with respect to the wing support booms. Basic
data were obtained by varying nozzle pressure ratio
at an angle of attack of 0° and by varying angle
of attack at jet off and at a fixed (different for
each Mach number) nozzle pressure ratio. The fixed
nozzle pressure ratio tested at each Mach number
represented a typical operating pressure ratio for a
turbofan engine at that Mach number. The Reynolds
number based on the wing mean aerodynamic chord
varied from 4.4 x 108 to 5.28 x 106,

All tests were conducted with 0.10-in-wide
boundary-layer transition strips consisting of No. 120
silicon carbide grit sparsely distributed in a thin film



of lacquer. A single strip was located 1.00 in. from
the tip of the forebody nose. Additional transition
strips were placed on both upper and lower surfaces
of the wings at 5 percent of the root chord to 10 per-
cent of the tip chord.

Presentation of Results

The results of this investigation are presented
in both tabular and plotted form. Table 1 is an
index to the results contained in tables 2 to 13.
The computer symbols appearing in these tables are
defined in the Symbols section of the paper with their
corresponding mathematical symbols. Only data for
the A /B powered nozzle are presented in plotted form
in this report. However, all data are tabulated.

Discussion

Pitch Thrust Vectoring

Static performance. The effect of cutback side-
walls on nozzle static performance for the afterburner
power nozzles with geometric pitch vector angles
of 0° and 15° is presented in figures 7 and 8, re-
spectively. Static nozzle performance is presented
as internal thrust ratio F/F;, internal gross thrust
ratio Fg/F;, resultant pitch vector angle ép, and
nozzle discharge coefficient wp/w;. Both cutback
sidewall nozzle configurations at &, = 0° had higher
thrust performance than the full sidewall configura-
tion at overexpanded conditions (NPR less than de-
sign NPR). Similar effects were found for the dry
power nozzle (ref. 20).

Peak nozzle performance occurred between nozzle
pressure ratios of 4 and 5. Typically, the peak nozzle
performance is obtained at the jet nozzle pressure
ratio required for fully expanded flow (the design
pressure ratio), which for the current nozzles is 4.17.
There is no effect of sidewall cutback on internal gross
thrust ratio at peak nozzle performance conditions
(fig. 7). Thus, there is no indication that cutback
sidewalls caused a decrease in the effective expansion
ratio of the nozzle that would have resulted in peak
performance occurring at a lower nozzle pressure
ratio. Earlier investigations showed that a reduction
in effective nozzle expansion ratio would be expected
with cutback sidewalls (refs. 12 and 20).

The effect of cutback sidewalls on nozzle per-
formance for the nozzle with a pitch vector an-
gle of 15° is presented in figure 8. As was the
case for the unvectored nozzle, both cutback side-
wall nozzle configurations had a higher thrust per-
formance than the nozzle with full sidewalls at over-
expanded conditions. Differences in peak nozzle

performance were less than 1 percent of the internal
gross thrust ratio. A comparison between the unvec-
tored and vectored nozzles shows similar gross thrust
ratios indicating little or no losses due to flow turn-
ing. The pitch-vectoring concept was very effective
in that resultant pitch vector angles were produced
that were greater than the geometric pitch angle of
15° at all nozzle pressure ratios tested. Such large
pitch vector angles, typical of pitch vectoring by dif-
ferential flap deflection (refs. 9 to 13), are caused in
part by local overexpansion at the nozzle throat on
the lower flaps of the nozzle. This very localized re-
gion of overexpanded flow forms immediately down-
stream of the throat and forces the exhaust flow to
overturn before expanding onto the lower flap.

Basic aeropropulsive performance. The effect
of cutback sidewalls on basic aeropropulsive per-
formance with the nozzle at zero pitch vector an-
gle is presented in figure 9. The variation of the
aeropropulsive parameter (F — D)/F; and total aft-
end drag coefficient with nozzle pressure ratio is
presented for Mach numbers from 0.60 to 1.20.
As expected, because of increased drag, the aero-
propulsive performance of all configurations de-
creased with increasing Mach number. Consistent
trends with a cutback sidewall are not evident at
subsonic Mach numbers (fig. 9(a)). However, dif-
ferences in aeropropulsive performance of less than 1
percent occurred at typical operational pressure ra-
tios. At M = 1.20, the nozzle configuration with the
100-percent sidewalls had the highest aeropropulsive
performance over the entire NPR range tested.

At subsonic speeds, there are no consistent trends
in aft-end drag as the nozzle sidewall is cut back
(fig. 9(b)). However, the configuration with the 100-
percent sidewalls had the lowest jet-off drag coeffi-
cient at all Mach numbers tested, and the configu-
ration with the 25-percent sidewalls had the highest
drag. This probably results from the cutback side-
walls having a steeper boattail angle than that of the
full sidewall (fig. 5(b)).

Pitch vectoring at forward speeds. The effect
of cutback sidewalls on total longitudinal character-
istics for the nozzles with geometric pitch vector an-
gles of 0° and 15° at a = 0° is presented in figures 10
and 11, respectively. Generally, the effect of cut-
back sidewalls was small. Similar results (not shown
in the figure) were found at @ = 20° between the
100-percent and 25-percent sidewalls at M = 0.15
and 0.60. (See tables 2 and 4.)

The increment in Cf, or Cp, between &, = 0°
(fig. 10) and 6, = 15° (fig. 11) at jet-off conditions
(NPR = 1.0) results from the aerodynamic flap effect
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of the deflected nozzle divergent flaps. (See fig. 5.)
As nozzle pressure ratio increases, Cy increases and
Cm becomes more negative for the pitch-vectored
configuration. The increase in lift coefficient with
increasing NPR is due primarily to the jet lift compo-
nent of the nozzle gross thrust and some jet-induced
lift. Jet-induced lift can be determined from the to-
tal aft-end aerodynamic lift coefficient C} presented
in tables 7 to 9. For this configuration with the
100-percent sidewalls, jet-induced lift varied from
about 20 to 30 percent of the total aft-end aero-
dynamic lift coeflicient C; at Mach numbers from
0.60 to 1.20. Similar results were obtained in
reference 13.

The drag-minus-thrust coefficient varies nearly
linearly with nozzle pressure ratio regardless of pitch
thrust vector angle. The differences between Cp_p
for 6yp = 0° and Cp_F for 6, p = 15° result both
from thrust losses caused by turning the exhaust vec-
tor away from the axial direction and from generally
higher drag on the é,, = 15° configuration. (See
table 7.) Increasing the magnitude of negative num-
bers for Cp_ r indicates improved performance from
either higher thrust or lower drag.

The effect of angle of attack on the total aft-
end longitudinal aerodynamic characteristics for the
nozzle with 100-percent and 25-percent sidewalls is
presented in figures 12 and 13, respectively. The
increment in lift or pitching-moment coefficient that
results from changing the nozzle pitch vector angle
from 0° to 15°, at either jet-off or jet-on conditions,
remains essentially constant over the entire angle-
of-attack range for all Mach numbers tested. Thus,
there is also no effect of pitch thrust vectoring on lift-
curve slope and longitudinal stability characteristics.
Similar results are reported in references 9 and 10.

Longitudinal control power. Longitudinal control
power and lift effectiveness due to thrust vectoring
are presented in figure 14. These parameters at a
constant Mach number are only a function of nozzle
pressure ratio because the aerodynamic increments
that resulted from thrust vectoring were independent
of angle of attack. The decrease in control power that
occurs as Mach number increases is the result of a
decrease in thrust (at constant NPR). The decrease
in thrust is caused primarily by the decrease in free-
stream static pressure as Mach number increases and,
to a lesser extent, by free-stream dynamic pressure
effects.

A comparison of longitudinal control power Cp,
from powered and aerodynamic controls is presented
in figure 15 as a function of Mach number at o =
0°. Longitudinal control power from pitch vectoring
was obtained for each Mach number shown at a
typical operating pressure ratio. These operating
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pressure ratios are indicated in the keys of figure 12.
Longitudinal control power from pitch vectoring 2-D
C-D nozzles on an F-18 aircraft model (ref. 13)
and a supersonic cruise fighter (ref. 10) is shown
in figure 15. Longitudinal control power generated
by the horizontal tail for the current configuration
(ref. 21), for the F-18 aircraft model (ref. 13), and by
a canard (ref. 10) is also presented in this figure. Note
that symbols are used to distinguish longitudinal
control power from pitch vectoring and that lines are
used to denote aerodynamic controls.

At low speed, pitch vectoring provided a signif-
icant increase in longitudinal control power when
compared with the horizontal tail (fig. 15). Simi-
lar results for the other configurations are presented
in reference 9. The decrease in value of the pow-
ered controls with increasing Mach number is caused
by the decrease in thrust discussed previously. Be-
cause aerodynamic controls are usually sized for low
speed, they are generally more effective than is re-
quired at high speeds. Thus, thrust vectoring could
be used to augment the control power provided by
aerodynamic controls, particularly at low speeds. For
an aircraft design utilizing pitch thrust vectoring to
augment aircraft control, the size of the aerodynamic
surfaces could be reduced, and this reduction would
likely reduce the drag.

Yaw Thrust Vectoring

Static performance. The effect of yaw thrust vec-
toring utilizing asymmetric sidewall cutback (trans-
lating sidewall concept) at static conditions is pre-
sented in figure 16. This yaw-vectoring concept
produced rather small (less than 3°) values of re-
sultant yaw vector angles. At overexpanded nozzle
operating conditions (NPR < (NPR)4e), the mea-
sured yaw vector angles were positive; at under-
expanded nozzle operating conditions (NPR > 4.2),
the yaw vector angles were negative. This effect of
thrust direction varying with pressure ratio is com-
mon in nonaxisymmetric nozzles whenever one flap
is longer than the other relative to the exhaust flow
centerline. It occurs for both unvectored and vec-
tored single-expansion-ramp nozzles (see, for exam-
ple, refs. 13 and 22) and some vectored 2-D C-D noz-
zles where rotation of the individual flaps takes place
about axes near the throat. This type of nozzle ge-
ometry presents expansion surfaces of unequal length
for the flow to work against; thus, one side of the
exhaust flow is contained longer by a flap (in this in-
vestigation, by the inboard sidewall) while the other
side of the exhaust flow is unbounded. The change
in the direction of the resultant yaw vector angles
as nozzle operation changes from overexpanded to



underexpanded indicates that the translating side-
wall concept may not be feasible in generating
directional control at transient engine operating con-
ditions. This trend in yaw vector angle with increas-
ing NPR was reported as a result of an earlier static
study (ref. 15). However, the magnitude of the re-
sultant yaw angles is so small (see fig. 16) that little
useful directional control could be provided over the
range of NPR’s tested. Larger yaw vector angles at
higher nozzle pressure ratios would result from trans-
lating the sidewall up to or past the nozzle throat, but
such sidewall translation would probably decrease
Fg/F;. (Seeref. 15.)

Yaw vectoring at forward speeds. The effect
of yaw thrust vectoring on the total aft-end lateral
aerodynamic characteristics is presented in figures 17
and 18. The variation of the lateral characteristics
with NPR at a = 0° is shown in figure 17, whereas
the effect of angle of attack with jet off and constant
NPR is shown in figure 18.

The variations in wind-on lateral characteristics
with NPR shown in figure 17 would be expected
from the static results discussed previously. (See
fig. 16.) The changes in direction of both Cy; and
Cy; are caused by the change in directions of 6, as
the nozzle operation changes from overexpanded to
underexpanded conditions. Thus, as discussed ear-
lier, yaw vectoring by truncated sidewalls may not
be feasible in producing positive yaw control over
the operational NPR range without further nozzle
geometry variations. As shown in figure 18, yawing
moment and the increment in Cy, resulting from side-
wall translation were essentially independent of angle
of attack. The insensitivity of the C, increment to
« is identical to the results discussed previously for
pitch thrust vectoring on the longitudinal character-
istics.

Internal Static Pressure Distributions

Internal static pressure distributions for the A/B
power nozzle with 100-percent sidewalls and 6y, =
0° are presented in figure 19. As shown in fig-
ure 6(b), pressures were measured along the center-
line of the top and bottom divergent flap as well as
outboard and inboard locations on the bottom di-
vergent flap. In general, the measured internal static
pressure distributions are similar to those measured
in conventional round nozzles. For NPR = 2.0 at
M =0, for example, the static pressures on the noz-
zle (fig. 19(a)) show a typical sudden pressure rise
across the exhaust-flow normal shock. As expected,
there was little or no effect of external flow on the
internal pressure distributions at constant NPR.

The effect of nozzle pressure ratio on the internal

static distributions for the A/B power nozzle with
the 100-percent sidewalls and 6, p = 15° is presented
in figure 20. The results indicate a highly inclined
throat at static conditions as the flow becomes sonic
(p/pt,; = 0.528) on the top flap at z/l = 0.67. There
is little or no effect of Mach number on these in-
ternal static pressure distributions at constant NPR
(fig. 20).

The effect of 50- and 25-percent-cutback sidewalls
on internal nozzle pressure characteristics is shown
in figures 21 and 22, respectively. As shown, the ini-
tial 50-percent-cutback sidewall produces flow sepa-
ration along the outboard portion of the bottom flap
(fig. 21(a)). Additional truncation of the sidewall
enlarges the separation region and begins to affect
the nozzle centerline pressures along the bottom flap
(fig. 22(a)). As would be expected, the separated re-
gion on the nozzle flap decreases as nozzle pressure
ratio is increased. Similar effects due to cutback side-
walls would be expected to occur for the unvectored
nozzle and are typical for this type of nozzle (refs. 20
and 22). There was little or no effect of external
flow on the internal static pressure distribution at
constant NPR.

External Static Pressure Distributions

Afterbody/nozzle pressure distributions for the
model with a nozzle pitch vector angle of 0° and 100-
percent sidewalls are presented in figure 23. Pres-
sures were measured only on the top surface of the
afterbody/nozzle as shown in figure 6(a). These pres-
sure distributions show typical results of a large ex-
pansion at the start of the afterbody boattail and a
recompression along the afterbody and nozzle. At
subsonic speeds, pressure recovery to positive values
of pressure coefficient on the nozzle with the 100-
percent sidewalls (fig. 23) can produce negative val-
ues of nozzle drag as previously reported in refer-
ence 23 for the configuration with the nozzle in the
dry power mode. Figures 24 and 25 present similar
afterbody/nozzle pressure distributions for the noz-
zles with 50- and 25-percent-cutback sidewalls and
show essentially no effect of cutback sidewall.

The effect of nozzle pressure ratio on afterbody/
nozzle pressure distributions for the model with a
nozzle pitch vector angle of 15° and 100-percent side-
walls is presented in figure 26. Thrust vectoring re-
duces the recompression of the flow on the afterbody/
nozzle upper surfaces. In general, vectoring tends to
increase pressures on the lower surface of the config-
uration which generally results in some induced lift
being generated.

The effect of cutback sidewall on the afterbody/
nozzle pressure distributions is presented in figures 27
to 30 for the pitch-vectored nozzle. At NPR < 3.5,
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pressures are more positive as the nozzle sidewalls
are cut back, whereas at NPR = 6.0, pressures are
more negative. The largest effect of the cutback
sidewall occurs on the outboard portion of the surface
of the afterbody/nozzle. As nozzle pressure ratio
increases, jet entrainment effects probably dominate
the flow field and more negative pressures result
from the pumping action of the vectored exhaust.
However, there is probably a pressurization of the
lower surface under these conditions because cutback
sidewalls had little or no effect on the afterbody
forces and moments (fig. 11).

Conclusions

An investigation has been conducted in the Lang-
ley 16-Foot Transonic Tunnel to determine the thrust
vectoring capability of two-dimensional convergent-
divergent nozzles installed on a twin-engine general
research fighter model. Pitch vectoring was accom-
plished by differential deflection of the nozzle upper
and lower divergent flaps. The effects of nozzle side-
wall cutback were studied for both unvectored and
pitch-vectored nozzles. A single cutback sidewall was
employed for yaw thrust vectoring. This investiga-
tion was conducted at Mach numbers from 0 to 1.20,
at angles of attack from —2° to 35°, and at nozzle
pressure ratios up to 9. An analysis of the results of
this investigation indicates the following conclusions:

1. Nozzle sidewall cutback caused little or no
effect on peak static nozzle performance for both
unvectored and pitch-vectored nozzles.
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2. Thrust-minus-drag performance for the unvec-
tored nozzle configurations varied less than 1 percent
at subsonic speeds, thus showing the relative insen-
sitivity of installed performance to nozzle sidewall
cutback.

3. At static conditions, resultant pitch vector an-
gle was always greater than the geometric pitch vec-
tor angle.

4, The increment in either the force or moment
coeflicient that resulted from pitch or yaw vectoring
remained essentially constant over the entire angle-
of-attack range for all Mach numbers tested.

5. Longitudinal control power was a function of
nozzle pressure ratio and Mach number. Powered
controls were very effective at low Mach numbers,
but their effectiveness decreased as Mach number
increased because of a reduction in thrust.

6. Longitudinal control power from thrust vector-
ing was greater than that provided by aerodynamic
controls at low speeds.

7. The yaw vectoring configuration tested was in-
effective at producing yaw vectoring at nozzle pres-
sure ratios typical for operation at subsonic Mach
numbers. Negative yaw vector angles were gener-
ated at underexpanded nozzle operating conditions,
but positive yaw vector angles were found at over-
expanded nozzle operating conditions for a nozzle us-
ing a single cutback sidewall to produce yaw thrust
vectoring.

NASA Langley Research Center
Hampton, VA 23665-5225
December 5, 1989



Appendix

Data Reduction and Calibration Procedure

Calibration Procedure

The main balance measured the combined forces
and moments due to nozzle gross thrust and the
external flow field of that portion of the model aft of
FS 44.75. The afterbody balance measured the forces
and moments due to the external flow field exerted
over the afterbody between FS 48.25 and 66.25.

Force and moment interactions exist between the
bellows-flow transfer system (fig. 4) and the main
force balance because the centerline of this balance
is below the jet centerline (fig. 1). Consequently,
single and combined loadings of normal force, axial
force, and pitching moment were made with and
without the jets operating with Stratford calibration
nozzles (ref. 17). These calibrations are performed
with the jets operating because this condition gives
a more realistic effect of pressurizing the bellows
than does capping off the nozzles and pressurizing
the flow system. Thus, in addition to the usual
balance-interaction corrections applied for a single
force balance under combined loads, another set
of interactions was applied to the data from this
investigation to account for the combined loading
effect of the main balance with the bellows system.
These calibrations were performed over a range of
expected normal forces and pitching moments. Note
that this procedure is not necessary for the afterbody
balance because the balance is not bridged by the
flow system.

Data Corrections

In order to achieve desired axial-force terms, the
axial forces measured by both force balances must
also be corrected for pressure-area tare forces acting
on the model, and the main balance must be cor-
rected for momentum tare forces caused by flow in
the bellows. The external seal and internal pressure
forces on the model were obtained by multiplying the
difference between the average pressure (external seal
or internal pressures) and free-stream static pressure
by the affected projected area normal to the model
axis. The momentum tare force was determined from
calibrations using the Stratford choke nozzles prior to
the wind-tunnel investigation.

Axial force minus thrust was computed from
the main balance axial force from the following

relationship:

Fy - Fj = FA.Mbal + (pes,l - poo)(Amb,l - Aseal,l)

+ (ﬁz _poo)Aseal.l - FA,mom - Df

(A1)
where the first term F4 mbal includes all pressure
and viscous forces (internal and external on both
the afterbody and thrust system). The second and
third terms account for the forward seal rim and
interior pressure forces, respectively. In terms of
an axial-force coefficient, the second term ranges
from —0.0001 to —0.0007 and the third term varies
+0.0075 depending upon Mach number and pressure
ratio. The internal pressure at any given set of
test conditions was uniform throughout the inside
of the model, thus indicating no cavity flow. The
momentum tare force F4 mem iS @ momentum tare
correction with jets operating and is a function of the
average bellows internal pressure, which is a function
of the internal chamber pressure in the supply pipes
just ahead of the sonic nozzles (fig. 5). Although
the bellows were designed to minimize momentum
and pressurization tares, small bellows tares still
exist with the jet on. These tares result from small
pressure differences between the ends of the bellows
when internal velocities are high and also from small
differences in the spring constants of the forward
and aft bellows when the bellows are pressurized.
The last term Dy is the friction drag of the section
from FS 44.75 to 48.25. A friction drag coefficient
of 0.0004 was applied at all Mach numbers. No
corrections were applied to the forces and moments
for the effects of angle of attack on this section.

The afterbody axial force is computed from a
similar relationship:

Fop = FA,Sbal + (pesﬂ - poo) (Amb,l - Aseal,l)
+ (P; — Poc)Aseal.2 + (Pes 3 — Poxc)
+ (Amb,2 - Aseal,2) (A?)

Since both balances are offset from the model cen-
terline, similar adjustments are made to the pitching
moments measured by both balances. These adjust-
ments are necessary because both the pressure area
and bellows momentum tare forces are assumed to
act along the model centerline. The pitching-moment
tare is determined by multiplying the tare force by
the appropriate moment arm and subtracting the
value from the measured pitching moments.
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Model Attitude

The adjusted forces and moments measured by
both balances are transferred from the body axis
of the metric portion of the model to the stability
axis. The attitude of the nonmetric forebody rel-
ative to gravity was determined from a calibrated
attitude indicator located in the model nose. The
angle of attack o, which is the angle between the
afterbody centerline and the relative wind, was de-
termined by applying terms for afterbody deflection
(caused when the model and balance bend under
aerodynamic load) and a flow angularity term to the
angle measured by the attitude indicator. The flow
angularity correction was 0.1°, which is the aver-
age angle measured in the Langley 16-Foot Transonic
Tunnel.

Thrust-Removed Data

The resulting external and internal thrust force
and moment coefficients from the main balance in-
clude total lift coefficient Cp ;, drag minus thrust
coefficient Cp_p, total pitching-moment coefficient
Cm.t. total rolling-moment coefficient Cyy, total-
yawing-moment coefficient Cp, 4, and total side-force
coefficient Cy;. Force and moment coefficients from
the afterbody balance are afterbody lift coefficient
Cp aft. afterbody drag coefficient Cp aft» and after-
body pitching-moment coeficient Cj, o5

The thrust-removed aerodynamic force and mo-
ment coefficients for the entire model were obtained
by determining the components of thrust in axial
force, normal force, pitching moment, rolling mo-
ment, yawing moment, and side force, and then
by subtracting these values from the measured to-
tal (aerodynamic plus thrust) forces and moments.
These thrust components at forward speeds were
determined from measured static data and were a
function of the free-stream static and dynamic pres-
sures. The thrust-removed aerodynamic coefficients
are given as follows:
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Cr = Cr; — Jet lift coefficient (A3)
Cp = Cp_fp + Thrust coefficient (A4)
Cm = Cmp ¢t — Jet pitching-moment coefficient (A5)
Cp = Cy 4 — Jet rolling-moment coefficient  (A6)
Cn = Cp¢ — Jet yawing-moment coefficient (A7)

Cy = Cy, — Jet side-force coefficient (A8)

The nozzle coeflicients are obtained by simply com-
bining the measured results from both force balances
as follows:

CL,n = CL - CL,aft (AQ)
Cpn =Cp —Cpag (A10)
Cm,n =Cm — Cm,aft (All)

Volume Coefficients

To facilitate the analysis of control-power char-
acteristics, a powered volume coefficient is defined.
(See ref. 9.) The volume coefficient of the horizontal
tail is

where S; is the horizontal tail area and L; is the
distance from the moment reference center to the
quarter-chord of the tail. The pitch vectoring
powered-volume coefficient is defined as

oL
S ¢

where A; is the nozzle throat area and L; is the

distance from the moment reference center to the

nozzle throat. The throat area is multiplied by 2

because the configuration reported on herein is a

twin-engine model.
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Table 1. Index to Data in Tables 2 to 13

Power Sidewall,
Table setting left /right b6y p, deg
2,3 Afterburner 100/100 A/B 0
4 50/50 A/B
5 25/25 A/B J
6 100/100 dry
7 100/100 A/B 15
8 50/50 A/B 15
9 25/25 A/B 15
10, 11 ! 100/25 A/B 0
12, 13 Dry 100/25 A/B 0
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Table 2. Longitudinal Aerodynamic Characteristics for A/B Nozzle With 100/100
A/B Sidewalls and 6, = 0°

MACH

.201
.202
.202
.203
.202
.199
.202
.201
.198
.200
.198
.200
.202
.199
.201
.201
.203
.201
.199
.200
.199
.903
.900
.901
.898
.900
.899
.902
.899
.901
.901
.902
.899
.899
.900
.901
.901
.899
.901
.903
.900
.901

NPR

Q0 N AW

LUV R R R RRENPPWREREEONNNON NN N

.99
.01
.96
.99
.97
.99
.98
.93
.90
.88
.80
.70
.67
.03
.00
.96
.02
.05
.99
.00
.99
.10
.98
.01
.99
.00
.10
.10
.09
.10
.10
.10
.09
.07
.01
.00
.01
.99
.00
.01
.99
.00

ALPHA

.00
.02
.04
.04
.03
-2.02
.01
3.01
5.98
9.03
12.02
16.01
18.01
-2.01
-.02
3.02
6.01
8.98
11.99
16.02
17.98
-.01
-.02
.00
.02
.00
-2.01
-.02
2.99
6.01
8.99
12.01
16.01
18.02
-1.99
.00
3.03
5.99
9.00
12.01
16.02
18.01

CLT

.0098
.0100
.0109
.0114
.0111
.0224
.0091
.0063
.0223
.0358
. 0486
.0655
.0747
.0218
.0093
.0083
.0287
.0479
.0660
.0896
.1008
.0107
.0088
.0097
.0097
.0101
.0086
.0090
. 0044
.0062
.0021
.0141
.0299
.0382
.0125
.0098
.0003
.0037
.0141
.0356
.0605
.0734

(a) Total aft end

C(D-F)

.0166
-.0151
-.0450
-.0773
-.1087

.0178

.0165

.0178

.0212

027

.0371

.0479

.0542
-.0764
-.0769
-.0755
-.0732
-.0679
-.0590
-.0476
~-.0417

.0033
-.0245
-.0511
-.1054
~-.1605

.0033

.0034

.0029

.0022

.0029

.0074

.0173

.0248
-.1052
-.1055
-.1060
-.1064
-.1050
-.0992
~-.0874
-.0785

CMT

.0031
.0069
.0117
.0156
.0183
.0137
.0026
.0083
.0201
.0294
.0455
.0634
.0738
.0203
L0147
.0083
.0024
.0144
.0289
L0473
.0558
.0059
.0066
.0110
.0168
.0224
.0038
.0054
.0056
.0075
. 0064
.0033
.0152
.0225
.0152
.0169
.0167
.0190
.0175
.0075
. 0066
.0151

CL

.0098
.0100
.0109
.0115
.0112
.0224
.0091
.0063
.0223
.0359
. 0487
.0656
.0748
.0186
.0093
.0036
.0192
.0337
L0471
.0645
.0726
.0107
.0088
.0097
.0097
.0101
.0086
.0090
.0044
.0062
.0020
.0142
.0300
.0384
.0088
.0098
.0054
.0076
.0028
.0131
.0307
.0401

Cb

.0166
.0158
.0153
.0136
.0121
.0178
.0165
.0178
.0212
.0271
.0371
L0479
.0542
.0155
.0144
.0149
.0175
.0229
.0304
.0402
.0453
.0033
.0034
.0040
.0033
.0020
.0033
.0034
.0029
.0022
.0029
.0074
.0173
.0248
.0033
.0029
.0023
.0016
.0022
. 0066
.0168
.0245

CM

.0031
.0041
.0060
.0069
. 0066
.0137
.0026
.0083
.0201
.0294
.0455
.0634
.0738
.0114
.0060
.0005
.0112
.0233
.0376
.0561
.0646
.0059
.0042
.0059
.0065
.0068
.0038
.0054
.0056
.0075
.0064
.0033
.0152
.0225
.0049
.0066
.0063
.0087
.0072
.0028
.0170
.0254
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MACH

.601
.599
.601
.602
.603
.604
.600
.602
.603
.601
.600
.600
.598
.599
.600
.602
.599
.598
.599
.600
.601
.597
.602
.602
.602
.601
.600
.599
.599
.600
.600
.598
.599
.599
.598
.596
.600
.600

NPR

el VS R VR SR GUR UL SR UL B UU R SUI SO I G0 S i U N SN Y I T I X Y ST

W W ww

.03
.99
.00
.52
.01
.03
.03
.03
.03
.03
.03
.02
.02
.51
.52
.51
.50
.49
.49
.49
.50
.02
.02
.05
.51
.01
.02
.02
.02
.00
.99
.96
.53
.46
.49
.48
.50
.50

ALPHA

.01
.02
~-.02
-.02
-.02
~1.94
.00
3.01
6.00
9.00
12.02
16.00
18.03
-1.85
.01
3.00
5.97
8.99
12.00
15.99
18.00
20.01
20.01
20.01
20.00
20.02
16.63
17.99
19.98
23.97
27.98
31.99
16.79
17.99
19.98
23.96
27.97
31.98

CLT

.0111
.0090
.0096
.0092
.0087
. 0065
.0045
.0023
.0013
.0052
.0099
.0255
.0340
.0118
.0050
.0062
L0172
.0296
.0429
.0692
.0827
.0413
.0633
.0843
.0938
.1251
.0267
.0321
.0396
.0572
.0769
.0921
.0710
.0785
.0925
.1216
.1542
.1822

Table 2. Continued

(a) Continued

C(D-F)

.0037
-.0609
-.1194
-.1501
-.2386

.0052

.0043

.0040

. 0042

.0052

.0068

.0127

.0176
-.1504
-.1509
-.1490
-.1490
-.1471
-.1437
-.1346
~.1279

.0234
-.0393
-.0958
-.1220
-.2085

.0144

.0173

.0225

.0375

.0584

.0831
-.1360
-.1281
-.1231
-.1047
-.0771
-.0455

CMT

.0055
.0101
.0171
.0199
.0283
.0033
.0031
.0032
.0016
.0013
.0059
.0182
.0241
.0195
.0187
.0176
.0165
.0131
.0079
.0055
.0119
.0293
.0236
.0189
.0166
.0086
.0196
.0232
.0292
.0463
.0714
.1010
.0057
.0098
.0160
.0354
.0661
.1007

CL

.0111
.0090
.0096
.0092
.0087
.0065
.0045
.0023
.0013
.0052
.0100
.0256
.0341
.0068
.0050
.0018
.0012
.0056
.0110
.0272
.0356
.0415
.0412
.0415
.0416
.0415
.0268
.0322
.0398
.0573
0771
.0923
.0262
.0318
.0402
.0591
.0825
.1013

CcD

.0037
.0032
.0043
.0034
.0038
.0052
.0043
.0040
.0042
.0052
.0068
.0127
.0176
.0040
.0037
.0037
.0039
.0049
.0067
.0125
.0174
.0234
.0218
.0223
.0220
.0213
.0144
.0173
.0226
.0375
.0585
.0832
.0129
.0162
.0213
.0364
.0583
.0844

CM

.0055
. 0046
.0056
.0054
.0052
.0033
.0031
.0032
.0016
.0013
.0059
.0182
.0241
.0050
.0042
.0032
.0021
.0013
. 0066
.0198
.0262
.0293
.0292
.0306
.0310
.0320
.0196
.0232
.0292
.0463
.0714
.1010
.0203
.0240
.0304
.0499
.0805
.1151



MACH

.152
.153
.153
.153
.154
.151
.151
.152
.152
.152
.152
.151
.151
.153
.153
.154
.154
.154
.151
.151
. 150
.152
.151
.152
.152
. 145
.149
.151
.151
.151
.151
.151
.151
.150
.152
.152
.152
.152
.152
.152
.151

NPR

PO DN PO NN N b pd b e b b b (WO W NN NNNNNODNNNDND R 2 e a2 = (W0 W N =

.00
.02
.60
.00
.81
.00
.00
.00
.00
.00
.00
.00
.00
.63
.65
.62
.62
.63
.62
.62
.62
.00
.03
.58
.01
.83
.83
.00
.00
.00
.00
.00
.00
.00
.58
.64
.63
.63
.63
.63
.63

ALPHA

.00

.00
.00
.00
-1.53
-.01
2.98
6.02
8.98
11.99
16.02
17.99
-1.54
.04
3.02
6.00
9.00
12.00
16.01
18.00
19.99
19.98
19.98
19.99
19.98
19.99
15.98
17.98
19.98
23.98
27.98
31.99
35.18
15.97
17.97
19.97
23.97
27.97
31.97
34.98

CLT

.0073
.0193
.0102
.0056
.0041
.0062
.0097
.0121
.0157
.0247
.0276
.0403
.0469

-.0412
-.0012

.0846
.1648
.2496
.3478
L4743
.5389
.0330
.3900
.5604
.6946
1.0548
.9980
.0310
.0507
.0573
.0685
.0937
.1085
.1125
.4668
.5467
.5949
.7119
.8189
.9369
1.0213

Table 2. Continued

(a) Concluded

C(D-F)

-1

-1
-1
-1
-1

-1

-1.
-1.
-1.

.0085
.0161
-1.
-1.
-2.
.0033
.0017
.0016
.0034
.0005
.0049
.0076
.0104
-1.
-1.
-1.
.5273
.5146
.5540
.5296
-1.
.0228
.9462
-1.
-1.
-2.
-2.

.0116

.0171

.0249

.0354

.0586

.0800

.0977
-1.
-1.
-1.
.4010

5133
8833
6051

5609
5664
5270

5157

4225
7909
7861
6255

4334
4758
4438

3410
2771
2245

CMT

.0060
.0737
.1304
.1798
.2522
.0012
.0018
.0018
.0009
.0065
.0104
.0207
.0261
.1499
.1529
.1432
.1447
.1416
.1422
.1286
.1235
.0294
.0594
.1153
.1581
.2645
L2477
.0179
.0305
.0360
.0446
.0655
.0874
.1028
.1159
.1162
.1143
.1055
.0903
.0695
.0503

CL

.0073
.0194
.0102
.0055
.0040
.0062
.0097
.0121
.0157
.0247
.0276
.0404
.0471
.0011
.0024
.0035
.0034
.0083
.0159
.0313
.0409
.0331
.0377
.0327
.0334
.0357
.0363
.0311
.0508
.0574
.0687
.0939
.1087
L1127
.0458
.0547
.0551
.0670
.0742
.0915
.0984

CcD

.0085
.0036
.0141
.0122
.0018
.0033
.0017
.0016
.0034
.0005
.0049
.0076
.0104
.0087
.0101
.0100
.0084
.0090
.0076
.0147
.0175
.0228
.0236
.0289
.0274
.0168
.0191
.0116
.0172
.0250
.0354
.0587
.0801
.0978
.0385
.0413
.0420
.0496
.0617
.0777
.0948

CM

.0060
.0135
.0083
.0044
.0059
.0012
.0018
.0018
. 0009
.0065
.0104
.0207
.0261
.0071
.0094
.0033
.0043
.0013
.0030
.0175
.0231
.0294
.0295
.0247
.0210
.0174
.0184
.0179
.0305
.0360
.0446
.0655
.0874
.1028
.0229
.0290
.0295
.0389
.0542
.0758
.0962

17
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MACH

.201
.202
.202
.203
.202
.199
.202
.201
.198
.200
.198
.200
.202
.199
.201
.201
.203
.201
.199
.200
.199
.903
.900
.901
.898
.900
.899
.902
.899
.901
.901
.902
.899
.899
.900
.901
.901
.899
.901
.903
.900
.901

NPR

QN W

LVEUVULEEUVTUVU R R R R R RPN WOFREREOSNONNO N

.99
.01
.96
.99
.97
.99
.98
.93
.90
.88
.80
.70
.67
.03
.00
.96
.02
.05
.99
.00
.99
.10
.98
.01
.99
.00
.10
.10
.09
.10
.10
.10
.09
.07
.01
.00
.01
.99
.00
.01
.99
.00

ALPHA

O W

.00
.02
.04
.04
.03
.02
.01
.01
.98
.03
.02
.01
.01
.01
.02
.02
.01
.98
.99
.02
.98
.01
.02
.00
.02
.00
.01
.02
.99
.01
.99
.01
.01
.02
.99
.00
.03
.99
.00
12.
16.
18.

01
02
01

(b) Afterbody and nozzle

CLAFT

.0081
.0079
.0078
.0080
.0078
.0163
.0078
.0036
.0174
.0301
. 0405
.0534
.0594
.0164
.0084
.0036
.0182
.0300
.0408
.0536
.0589
.0033
.0032
.0033
.0034
.0034
.0018
.0032
.0049
.0060
.0047
.0005
.0138
.0189
.0017
.0032
.0050
.0055
.0043
.0003
.0151
.0203

Table 2. Continued

CDAFT

.0084
.0084
.0084
.0085
.0085
.0091
.0086
.0092
.0114
.0150
.0199
.0266
.0305
.0093
.0087
.0093
.0116
.0152
.0199
.0269
.0305
. 0060
.0055
.0055
.0054
.0052
.0059
.0060
.0059
.0056
.0058
.0073
.0142
.0188
.0053
. 0054
.0053
.0050
.0052
.0070
.0141
.0187

CMAFT

.0077
.0075
.0075
.0075
.0074
.0145
.0073
.0022
.0153
.0284
.0418
.0562
.0632
.0144
.0078
.0025
.0163
.0289
.0421
.0569
.0626
.0028
.0027
.0028
.0029
.0028
.0010
.0026
.0051
.0066
.0070
.0051
.0055
.0093
.0009
.0027
.0054
.0063
.0067
.0044
.0071
.0112

CLN

.0017
.0021
.0031
.0035
.0034
.0060
.0013
.0027
.0050
.0058
.0082
.0122
.0154
.0022
.0009
.0000
.0011
.0037
.0063
.0110
.0138
.0075
.0056
.0064
.0063
.0067
.0069
.0059
.0005
.0002
.0027
.0147
.0162
.0195
.0071
.0066
. 0004
.0021
.0015
.0129
.0156
.0198

CDN

.0082
.0074
.0069
.0051
.0036
.0086
.0080
.0086
.0098
.0121
.0172
.0213
.0237
.0063
.0057
.0056
.0059
.0077
.0105
.0133
.0149
.0027
.0020
.0016
.0021
.0032
.0026
.0027
.0030
.0034
.0029
.0000
.0031
.0061
.0020
.0024
.0030
.0034
.0031
.0003
.0027
.0058

CMN

.0046
.0034
.0015
.0007
.0008
.0008
. 0047
.0061
.0048
.0010
.0037
.0071
.0106
.0030
.0018
.0020
.0051
.0057
. 0044
.0007
.0020
.0031
.0015
.0030
.0035
. 0040
.0028
.0028
.0005
.0009
.0005
.0084
.0097
.0132
.0039
.0039
.0009
.0023
.0005
.0072
.0099
.0142



MACH

.601
.599
.601
.602
.603
.604
.600
.602
.603
.601
.600
.600
.598
.599
.600
.602
.599
.598
.599
.600
.601
.597
.602
.602
.602
.601
.600
.599
.599
.600
.600
.598
.599
.599
.598
.596
.600
.600

NPR

R e S =S N WWRNHWWWWWWLWWWRERPRRPRRERERPEREREOUWWS S

LW wwww

.03
.99
.00
.52
.01
.03
.03
.03
.03
.03
.03
.02
.02
.51
.52
.51
.50
.49
.49
.49
.50
.02
.02
.05
.51
.01
.02
.02
.02
.00
.99
.96
.53
.46
.49
.48
.50
.50

ALPHA

.01
.02
-.02
-.02
-.02
-1.94
.00
3.01
6.00
9.00
12.02
16.00
18.03
-1.85
.01
3.00
5.97
8.99
12.00
15.99
18.00
20.01
20.01
20.01
20.00
20.02
16.63
17.99
19.98
23.97
27.98
31.99
16.79
17.99
19.98
23.96
27.97
31.98

CLAFT

.0032
.0031
.0031
.0029
.0031
.0041
.0028
.0019
.0004
.0019
.0050
.0148
.0197
.0035
.0025
.0016
.0002
.0021
. 0055
.0154
.0206
.0224
.0230
.0231
.0233
.0234
.0149
.0177
.0223
.0363
.0510
.0665
.0156
.0181
.0228
.0372
.0530
.0699

Table 2. Continued

(b) Continued

CDAFT

.0055
.0052
.0052
.0052
.0051
.0056
.0054
.0054
.0056
.0061
.0072
.0108
.0133
.0052
.0051
.0051
.0053
.0058
.0069
.0105
.0133
.0156
.0156
.0156
.0157
.0157
.0109
.0125
.0156
.0255
.0389
.0566
.0109
.0123
.0155
.0256
.0398
.0586

CMAFT

.0029
.0026
.0027
.0025
.0027
.0032
.0024
.0024
.0014
. 0007
.0042
.0137
.0177
.0026
.0022
.0022
.0014
.0008
.0046
.0142
.0186
.0215
.0221
.0224
.0226
.0229
.0148
.0171
.0215
.0370
.0573
.0835
.0156
.0176
.0221
.0382
.0603
.0886

CLN

.0079
.0059
.0065
.0062
.0056
.0025
.0017
.0004
.0017
.0033
.0050
.0108
.0144
.0033
.0025
.0002
.0015
.0035
.0055
.0118
.0150
.0190
.0182
.0183
.0183
.0181
.0119
.0145
.0174
.0210
.0261
.0258
.0106
.0137
.0174
.0219
.0295
.0314

CDN

.0018
.0020
.0009
.0018
.0013
. 0004
.0011
.0015
.0014
.0009
.0003
.0019
.0043
.0011
.0013
.0014
.0014
.0009
.0002
.0020
.0041
.0079
.0062
.0067
.0063
.0056
.0034
.0048
.0070
.0121
.0196
.0266
.0020
.0038
.0059
.0107
.0185
.0258

CMN

.0026
.0020
.0029
.0029
.0025
.0002
.0007
.0007
.0002
.0006
.0017
.0045
. 0064
.0024
.0020
.0010
.0007
.0005
.0019
.0057
.0076
.0078
.0070
.0082
.0084
.0091
.0048
.0062
.0077
.0093
.0141
.0175
.0046
.0064
.0083
.0117
.0202
.0264

19
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MACH

.152
.153
.153
.153
.154
.151
.151
.152
.152
.152
.152
.151
.151
.153
.153
.154
.154
.154
.151
.151
.150
.152
.151
.152
.152
.145
.149
.151
.151
.151
.151
.151
.151
.150
.152
.152
.152
.152
.152
.152
.151

NPR

RN R PR P REREPWWWRNNEFENRNDNNODNDNNNRN P e e 0 W R A s

.00
.02
.60
.00
.81
.00
.00
.00
.00
.00
.00
.00
.00
.63
.65
.62
.62
.63
.62
.62
.62
.00
.03
.58
.01
.83
.83
.00
.00
.00
.00
.00
.00
.00
.58
.64
.63
.63
.63
.63
.63

ALPHA

.00
.01
.00
.00
.00
.53
.01
.98
.02
.98
.99
.02
.99
.54
.04
.02
.00
.00
.00
.01
.00
.99
.98
.98
.99
.98
.99
.98
.98
.98
.98
.98
.99
.18
.97
.97
.97
.97
.97
.97
.98

CLAFT

.0016
.0032
.0032
.0031
.0043
.0020
.0016
.0017
.0002
.0024
.0070
.0135
.0183
.0021
.0025
.0011
.0008
.0010
.0048
.0132
.0191
.0175
.0181
.0181
.0181
.0167
.0184
.0103
.0165
.0206
.0272
.0392
.0522
.0575
.0102
.0175
.0209
.0271
.0390
.0522
.0620

Table 2. Concluded

(b) Concluded

CDAFT

.0064
.0071
.0071
.0076
.0077
.0058
.0057
.0058
.0059
.0066
.0081
.0107
.0132
.0069
.0067
.0070
.0070
.0074
.0087
.0120
.0147
.0137
.0141
.0140
.0142
.0142
.0147
.0086
.0108
.0130
.0185
.0288
.0428
.0521
.0095
.0122
.0144
.0195
.0299
.0440
.0566

CMAFT

. 0006
.0026
.0034
.0035
.0047
.0014
.0011
.0028
.0017
.0008
.0062
.0127
.0174
.0024
.0033
.0004
.0001
.0007
.0043
.0134
.0197
.0199
.0211
.0207
.0208
.0191
.0210
.0104
.0172
.0214
.0270
.0419
.0611
.0715
.0094
.0188
.0218
.0283
L0426
.0617
.0783

CLN

.0088
.0226
.0134
.0086
.0083
.0082
.0113
.0138
.0159
.0224
.0206
.0269
.0288
.0032
.0001
.0024
.0026
.0073
.0110
.0180
.0219
.0156
.0195
.0146
.0153
.0190
.0179
.0208
.0343
.0368
.0415
.0546
.0565
.0552
.0357
.0372
.0342
.0399
.0352
.0394
.0364

CDN

.0022
.0106
.0070
.0047
.0059
.0091
.0040
.0075
.0093
.0071
.0032
.0030
.0028
.0018
.0034
.0030
.0014
.0015
.0011
.0026
.0028
.0091
.0095
.0150
.0132
.0026
.0044
.0030
.0064
.0120
.0169
.0299
.0373
. 0457
.0289
.0290
.0277
.0301
.0319
.0337
.0382

CMN

.0065
.0161
.0117
.0010
.0012
.0026
.0030
.0047
.0026
.0056
.0041
.0079
.0087
.0047
.0061
.0037
.0042
.0006
.0014
.0041
.0034
. 0094
.0084
.0040
.0001
.0017
.0026
.0075
.0133
.0146
.0177
.0236
.0262
.0312
.0135
.0101
.0077
.0106
.0116
.0141
.0179
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Table 3. Lateral Aerodynamic Characteristics for A/B Nozzle With 100/100 A/B
Sidewalls and 6, , = 0°

MACH NPR  ALPHA  CROLLT CNT CYT CROLL CN CcY
.201 .99 .00 .0000 .0002 -.0007 .0000 .0002 -.0007
.202  3.01 .02 .0000 .0003 -.0011 .0000 .0003 -.0011
.202 4.96 .04 .0001 .0003 -.0012 .0001 .0003 -.0012
.203  6.99 .04 .0001 .0003 -.0014 .0001 .0003 -.0014
.202  8.97 .03 .0001 .0003 -.0015 .0001 .0003 -.0015

.199 .99 -2.02 .0001 .0001 -.0007 .0001 .0001 -.0007
.202 .98 .01 .0001 .0003 -.0008 .0001 .0003 -.0008
.201 .93 3.01 .0001 .0004 -.0013 .0001 .0004 -.0013
.198 .90 5.98 .0001 .0004 -.0015 .0001 .0004 -.0015
.200 .88 9.03 .0002 .0005 -.0019 .0002 .0005 -.0019
.198 .80 12.02 .0001 .0003 -.0018 .0001 .0003 -.0018
.200 .70 16.01 .0001 .0003 -.0015 .0001 .0003 -.0015

.202 .67 18.01 .0002 .0003 -.0013 .0002 .0003 -.0013
.199 7.03 -2.01 .0002 .0004 -.0022 .0002 .0004 -.0022
.201 7.00 -.02 .0002 .0005 -.0025 .0002 .0005 -.0025
.201  6.96 3.02 .0002 .0006 -.0028 .0002 .0006 -.0028
.203  7.02 6.01 .0002 .0007 -.0030 .0002 .0007 -.0030
.201  7.05 8.98 .0003 .0011 -.0034 .0003 .0011 -.0034
.199  6.99 11.99 .0002 .0004 -.0031 .0002 .0004 -.0031
.200  7.00 16.02 .0002 .0001 -.0022 .0002 .0001 -.0022
199 6.99 17.98 .0002 .0000 -.0018 .0002 .0000 -.0018
.903 1.10 -.01 .0003 .0005 -.0024 .0003 .0005 -.0024
.900 1.98 -.02 .0003 .0006 -.0028 .0003 .0006 -.0028
.901  3.01 .00 .0003 .0005 -.0029 .0003 .0005 -.0029
.898 4.99 .02 .0003 .0005 -.0032 .0003 .0005 -.0032
.900 7.00 .00  .0003 .0005 -.0036 .0003 .0005 -.0036
.899 1.10 -2.01 .0002 .0004 -.0023 .0002 .0004 -.0023
.902 1.10 -.02 .0003 .0005 -.0025 .0003 .0005 -.0025
.899 1.09 2.99 .0002 .0005 -.0025 .0002 .0005 -.0025
.901 1.10 6.01 .0002 .0005 -.0023 .0002 .0005 -.0023
.901 1.10 8.99 .0002 .0004 -.0022 .0002 .0004 -.0022
.902 1.10 12.01 .0002 .0003 -.0021 .0002 .0003 -.0021
.899 1.09 16.01 .0002 .0002 -.0018 .0002 .0002 -.0018
.899 1.07 18.02 .0002 .0003 -.0021 .0002 .0003 -.0021
.900 5.01 -1.99 .0002 .0004 -.0029 .0002 .0004 -.0029
.901 5.00 .00  .0002 .0005 -.0030 .0002 .0005 -.0030
.901 5.01 3.03 .0002 .0005 -.0029 .0002 .0005 -~.0029
.899  4.99 5.99 .0002 .0005 -.0029 .0002 .0005 -.0029
.901 5.00 9.00 .0002 .0005 -.0029 .0002 .0005 -.0029
.903  5.01 12.01 .0002 .0003 -.0025 .0002 .0003 -.0025
.900 4.99 16.02 .0002 .0002 -.0024 .0002 .0002 -.0024
.901 5.00 18.01 .0002 .0003 -.0026 .0002 .0003 -.0026
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MACH

.601
.599
.601
.602
.603
. 604
.600
.602
.603
.601
.600
.600
.598
.599
.600
.602
.599
.598
.599
.600
.601
.597
.602
.602
.602
.601
.600
.599
.599
.600
.600
.598
.599
.599
.598
.596
.600
.600

NPR
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Wwww

.03
.99
.00
.52
.01
.03
.03
.03
.03
.03
.03
.02
.02
.51
.52
.51
.50
.49
.49
.49
.50
.02
.02
.05
.51
.01
.02
.02
.02
.00
.99
.96
.53
46
.49
.48
.50
.50

ALPHA

.01
.02
-.02
-.02
-.02
-1.94
.00
3.01
6.00
9.00
12.02
16.00
18.03
-1.85
.01
3.00
5.97
8.99
12.00
15.99
18.00
20.01
20.01
20.01
20.00
20.02
16.63
17.99
19.98
23.97
27.98
31.99
16.79
17.99
19.98
23.96
27.97
31.98

CROLLT

.0002
.0002
.0002
.0002
.0002
.0003
. 0004
.0004
.0004
.0003
.0003
.0003
.0003
.0002
.0002
.0002
.0002
.0002
.0003
.0002
.0003
.0001
.0002
.0002
.0002
.0002
.0000
.0000
.0001
.0011
.0018
.0016
.0001
.0001
.0002
.0012
.0019
.0018

Table 3. Continued

CNT

.0002
.0006
.0003
.0004
.0004
.0005
.0004
.0005
.0005
.0005
.0006
.0005
.0006
.0004
.0004
.0004
.0004
. 0004
.0006
.0005
.0007
.0006
.0011
.0011
.0010
.0012
.0002
.0002
.0007
.0078
.0128
.0127
. 0004
.0005
.0012
.0082
.0133
.0141

CYT

.0015
.0024
.0026
.0028
.0033
.0029
.0028
.0028
.0028
.0028
.0028
.0026
.0028
.0032
.0029
.0032
.0032
.0032
.0035
.0032
.0040
.0020
.0035
.0039
.0041
.0050
.0011
.0012
.0025
.0188
.0275
.0266
.0021
.0025
.0045
.0206
.0298
.0304

CROLL

.0002
.0002
.0002
.0002
.0002
.0003
.0004
.0004
.0004
.0003
.0003
.0003
.0003
.0002
.0002
.0002
.0002
.0002
.0003
.0002
.0003
.0001
.0002
.0002
.0002
.0002
.0000
.0000
.0001
.0011
.0018
.0016
.0001
.0001
.0002
.0012
.0019
.0018

CN

.0002
. 0006
.0003
.0004
. 0004
.0005
.0004
.0005
.0005
.0005
.0006
.0005
. 0006
.0004
.0004
.0004
. 0004
.0004
.0006
.0005
.0007
.0006
.0011
.0011
.0010
.0012
.0002
.0002
.0007
.0078
.0128
.0127
. 0004
.0005
.0012
.0082
.0133
.0141

cY

.0015
.0024
.0026
.0028
.0033
.0029
.0028
.0028
.0028
.0028
.0028
.0026
.0028
.0032
.0029
.0032
.0032
.0032
.0035
.0032
.0040
.0020
.0035
.0039
.0041
.0050
.0011
.0012
.0025
.0188
.0275
.0266
.0021
.0025
.0045
.0206
.0298
.0304




MACH

.152
.153
.153
.153
.154
.151
.151
.152
.152
.152
.152
.151
.151
.153
.153
.154
.154
.154
.151
.151
.150
.152
.151
.152
.152
.145
.149
.151
.151
.151
.151
.151
.151
.150
.152
.152
.152
<152
.152
.152
.151

NPR

NN RN = s o H WWWRRNENRNRMNANRNRRNRN R = W Ww RN -

.00
.02
.60
.00
.81
.00
.00
.00
.00
.00
.00
.00
.00
.63
.65
.62
.62
.63
.62
.62
.62
.00
.03
.58
.01
.83
.83
.00
.00
.00
.00
.00
.00
.00
.58
.64
.63
.63
.63
.63
.63

ALPHA

.00
-.01
.00
.00
.00
-1.53
-.01
2.98
6.02
8.98
11.99
16.02
17.99
-1.54
.04
3.02
6.00
9.00
12.00
16.01
18.00
19.99
19.98
19.98
19.99
19.98
19.99
15.98
17.98
19.98
23.98
27.98
31.99
35.18
15.97
17.97
19.97
23.97
27.97
31.97
34.98

Table 3. Concluded

CROLLT

.0029
.0032
.0028
.0020
.0016
.0020
.0018
.0018
.0018
.0015
.0014
.0011
.0011
.0005
.0007
.0010
.0006
.0009
.0007
.0004
.0003
.0020
.0016
.0009
.0007
.0006
.0005
.0015
.0014
.0014
.0010
.0012
.0006
.0009
.0013
.0010
.0009
.0006
.0006
-.0005
-.0006

CNT

.0037
.0093
.0062
.0043
.0030
.0029
.0033
.0033
.0037
.0043
.0037
.0043
.0049
.0029
.0028
.0041
.0039
.0047
.0047
.0043
.0051
.0010
.0085
.0071
.0050
.0056
.0052
.0017
.0016
.0017
.0011
.0020
.0023
.0023
.0066
.0064
.0062
.0051
.0072
.0016
.0010

CYT

.0222
.0376
.0352
.0352
.0365
0174
.0188
.0170
.0170
.0170
.0135
.0134
.0152
.0228
.0197
.0245
.0212
.0243
.0218
.0197
.0201
.0041
.0251
.0253
.0237
.0305
.0287
.0075
.0059
.0058
.0037
.0042
.0061
.0048
.0252
.0250
.0232
.0209
.0233
.0078
.0073

CROLL

.0029
.0032
.0028
.0020
.0016
.0020
.0018
.0018
.0018
.0015
.0014
.0011
.0011
.0005
.0007
.0010
.0006
.0009
.0007
.0004
.0003
.0020
.0016
.0009
. 0007
. 0006
.0005
.0015
.0014
.0014
.0010
.0012
.0006
.0009
.0013
.0010
.0009
.0006
.0006
-.0005
-.0006

CN

.0037
.0093
.0062
.0043
.0030
.0029
.0033
.0033
.0037
.0043
.0037
.0043
.0049
.0029
.0028
.0041
.0039
.0047
.0047
.0043
.0051
.0010
.0085
.0071
.0050
.0056
.0052
.0017
.0016
.0017
.0011
.0020
.0023
.0023
. 0066
.0064
.0062
.0051
.0072
.0016
.0010

CcY

.0222
.0376
.0352
.0352
.0365
.0174
.0188
.0170
.0170
.0170
.0135
.0134
.0152
.0228
.0197
.0245
.0212
.0243
.0218
.0197
.0201
.0041
.0251
.0253
.0237
.0305
.0287
.0075
.0059
.0058
.0037
.0042
.0061
.0048
.0252
.0250
.0232
.0209
.0233
.0078
.0073
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Table 4. Longitudinal Aerod
Sidewalls and 6, ), = 0°

MACH

1.201
1.201
1.200
1.201
1.201
.902
.901
.900
.897
.900
.598
.598
.600
.600
.602

MACH

1.201
1.201
1.200
1.201
1.201
.902
.901
.900
.897
.900
.598
.598
.600
.600
.602

NPR

LNMWWNFH NN ONUD W

.97
.01
.00
.06
.03
.10
.02
.00
.99
.01
.03
.02
.01
.58
.09

NPR

.97

NMWWLWRNeR NI WNE=R OSSN W

.01
.00
.06
.03
.10
.02
.00
.99
.01
.03
.02
.01
.58
.09

ALPHA

.01
.02
.02
.02
.02
.00
.02
.02
.01
.02
.01
.02
.01
.02
.02

ALPHA

.01
.02
.02
.02
.02
.00
.02
.02
.01
.02
.01
.02
.01
.02
.02

ynamic Characteristics for A/B Nozzle With 50/50 A/B

CLT

.0096
.0086
.0104
.0108
.0111
.0108
.0108
.0111
.0109
.0108
.0085
.0069
.0068
.0067
.0061

(b) Afterbody and nozzle

CLAFT

-.0084
-.0081
-.0084
-.0083
-.0083
-.0035
-.0036
-.0037
-.0037
-.0036
-.0032
-.0031
-.0036
-.0031
-.0028

(a) Total aft end

C(D-F)

.0173
-.0150
-.0452
-.0774
-.1084

.0033
-.0264
-.0518
-.1058
-.1599

.0039
-.0626
-.1197
-.1542
-.2454

CDAFT

.0083
.0084
.0085
.0085
.0085
.0060
.0055
.0055
.0054
.0052
. 0054
.0051
.0051
.0051
.0050

CMT

.0045
.0064
.0120
.0158
.0189
.0065
.0098
.0127
.0179
.0231
.0049
.0110
L0171
.0205
.0292

CMAFT

.0082
.0079
.0081
.0080
.0079
.0032
.0034
.0034
.0034
.0032
.0030
.0030
.0036
.0029
.0027

CL

.0096
.0086
.0104
.0109
.0112
.0108
.0108
.0112
.0109
.0109
.0085
.0070
.0068
.0067
.0062

CLN

.0012
.0005
.0021
.0026
.0029
.0073
.0072
.0075
.0072
.0073
.0053
.0039
.0033
.0037
.0034

CD

.0173
.0161
.0158
.0147
.0134
.0033
.0026
.0033
.0033
.0028
.0039
.0031
.0045
.0040
.0027

CDN

.0090
.0078
.0073
.0062
.0049
.0028
.0028
.0022
.0021
.0024
.0015
.0020
. 0006
.0011
.0024

CM

.0045
.0035
.0062
.0069
.0071
.0065
.0073
.0076
.0075
.0075
. 0049
.0054
.0056
.0056
.0055

CMN

.0037
.0044
.0019
.0011
.0008
.0033
.0040
.0042
.0040
. 0042
.0019
.0024
.0021
.0027
.0028
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Table 5. Longitudinal Aerodynamic Characteristics for A/B Nozzle With 25/25 A/B

Sidewalls and &y p = 0°

MACH

.200
.200
.202
.202
.201
.200
.203
.204
.200
.201
.204
.200
.200
.200
.202
.201
.201
.199
.199
.203
.200
.901
.903
.898
.903
.899
.902
.901
902
.897
.901
.902
.901
.899
.901
.899
.900
.901
.901
.902
.903
.899

NPR

O~y LW

VMU UUUTUN N e e b e = e B NN =N ON N

.92
.03
.01
.00
.97
.95
.91
.90
.88
.85
.81
.74
.70
.98
.00
.99
.00
.00
.99
.04
.01
.09
.03
.01
.03
.02
.10
.09
.09
.09
.09
.09
.09
.08
.02
.02
.02
.02
.02
.02
.03
.01

ALPHA

.02
.02
.01
.02
.03
-2.04
.01
2.99
5.98
8.99
12.01
16.03
17.99
-1.99
-.01
3.01
6.01
9.01
11.98
15.99
18.01
-.02
-.01
-.02
.00
.00
-2.05
-.01
3.02
6.02
9.03
12.01
16.00
18.01
-2.05
.01
2.99
6.00
9.00
12.02
16.04
18.01

CLT

.0104
.0092
.0101
.0102
.0105
.0222
.0109
.0039
.0197
.0337
.0498
.0660
.0752
.0210
.0079
.0097
.0291
.0491
.0670
.0919
.1035
.0092
.0089
.0077
.0082
.0078
.0080
.0079
.0031
.0053
.0027
.0140
.0290
.0376
.0113
.0077
.0022
.0056
.0146
.0367
.0612
.0738

(a) Total aft end

C(D-F)

.0184
-.0152
-.0448
-.0760
-.1075

.0196

.0184

.0186

.0218

.0294

.0375

. 0487

.0550
-.0742
-.0752
-.0746
-.0717
-.0664
-.0576
-.0460
-.0392

.0042
-.0261
-.0513
-.1044
-.1601

.0038

.0038

.0033

.0027

.0032

.0077

.0174

.0249
-.1051
-.1054
-.1055
-.1057
-.1043
-.0986
-.0862
-.0783

CMT

.0054
.0063
.0106
.0137
.0174
.0131
.0052
.0048
.0176
.0302
.0469
.0643
.0745
.0193
.0128
.0065
.0035
.0159
.0315
.0514
.0607
.0046
.0079
.0091
.0147
.0197
.0030
.0043
. 0044
.0063
.0065
.0032
.0144
.0221
.0131
.0146
.0144
.0170
.0162
.0061
.0081
.0172

CL

.0104
.0093
.0101
.0102
.0106
.0222
.0109
.0039
.0198
.0338
.0499
.0661
.0753
.0178
.0079
.0049
.0196
.0348
.0481
.0668
.0754
.0092
.0089
.0077
.0082
.0079
.0080
.0079
.0031
.0052
.0027
.0141
.0291
.0378
.0074
.0077
.0035
.0058
.0024
.0141
.0313
.0402

cD

.0184
.0162
.0161
.0150
.0136
.0196
.0184
.0186
.0218
.0294
.0375
.0487
.0551
.0169
.0159
.0164
.0190
.0239
.0318
.0418
.0478
.0042
.0032
.0041
.0040
.0032
.0038
.0038
.0033
.0027
.0032
.0077
.0174
.0250
.0037
.0038
.0035
.0028
.0033
.0078
.0183
.0255

CM

.0054
.0034
.0048
.0050
.0057
.0131
.0052
.0048
.0176
.0302
.0469
.0643
.0745
.0105
.0041
.0022
.0123
.0247
.0402
.0602
.0695
.0046
.0054
.0040
.0044
.0040
.0030
.0043
.0044
.0063
.0065
.0032
.0144
.0221
.0027
.0042
.0040
.0066
.0058
.0042
.0185
.0277
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MACH

.602
.599
.604
.597
.598
.602
.599
.601
.600
.602
.600
.598
.599
.600
.599
.602
.600
.599
.599
.598
.600
.598
.600
.599
.600
.599
.600
.601
.600
.601
.598
.601
.599
.601
.600
.598
.600
.599

NPR

S e = D WD 0 W W W W0 W W W ke b s s e DN (0 WD S

wwwwww

.03
.99
.00
.54
.97
.03
.03
.03
.03
.03
.03
.03
.02
.49
.50
.50
.50
.50
.50
.49
.50
.02
.97
.01
.55
.98
.03
.03
.02
.00
.98
.96
.49
.51
.51
.51
.52
.51

ALPHA

.03
.02
.02
.01
.01
-1.74
.03
2.99
6.00
8.99
12.00
15.99
17.98
-1.67
.01
3.00
6.01
9.00
12.00
16.00
17.99
20.02
20.01
19.99
20,00
20.00
16.59
17.96
19.98
23.98
27.98
31.96
16.78
17.99
19.99
23.99
27.99
31.98

CLT

.0102
.0079
.0070
.0065
.0050
.0057
.0041
.0020

.0015
.0051
.0098
.0258
.0334

.0096
.0033

.0069
.0186
.0308
. 0440
.0703
.0838
.0410
.0624
.0843
.0957
.1263
.0268
.0318
.0397
.0569
.0773
.0932
.0710
.0804
.0937
.1229
.1551
.1834

Table 5. Continued

{(a) Continued

C(D-F)

.0048
-.0610
-.1177
-.1523
-.2385

.0049

.0048

.0041

.0046

.0052

.0068

.0132

.0180
-.1493
-.1495
-.1487
-.1480
-.1461
-.1425
-.1343
-.1269

.0232
-.0374
-.0944
-.1248
-.2052

.0142

.0175

.0229

.0382

.0596

.0849
-.1327
-.1292
-.1229
-.1045
-.0768
-.0459

CMT

.0048
.0097
.0146
.0179
.0249
.0030
.0028
.0030
.0014
.0009
.0052
.0180
.0233
.0175
.0167
.0162
.0146
.0115
. 0064
.0074
.0141
.0288
.0236
.0205
.0184
.0125
.0190
.0225
.0288
. 0460
.0728
.1036
.0075
.0117
.0181
.0375
.0681
.1029

CL

.0102
.0079
.0070
.0065
.0050
.0058
.0041
.0020
.0016
.0052
.0099
.0259
.0336
.0052
.0033
.0010
.0026
.0068
.0121
.0279
.0366
0412
.0413
.0419
.0422
.0431
.0269
.0319
.0398
.0571
.0775
.0934
.0269
.0331
.0412
.0601
.0829
.1017

cD

.0048
.0029
. 0044
.0047
.0054
.0049
.0048
.0041
.0047
.0052
.0069
.0132
.0180
.0039
.0040
.0040
. 0046
.0056
.0077
.0138
.0188
.0233
.0211
.0226
.0226
.0237
.0142
.0175
.0229
.0383
.0597
.0850
.0140
.0169
.0221
.0371
.0594
.0854

CM

.0048
.0042
.0033
.0031
.0017
.0030
.0028
.0030
.0014
.0009
.0052
.0180
.0233
.0031
.0023
.0018
.0002
.0029
.0080
.0218
.0285
.0288
.0289
.0320
.0331
.0358
.0190
.0225
.0288
.0460
.0728
.1036
.0219
.0261
.0325
.0520
.0826
L1174




MACH

.151
.149
.151
.151
.150
.149
.150
.149
.151
.151
.150
.148
.151
.150
.150
.151
.151
.148
.151
.150
.148
.151
.150
.150
.150
.150
.149
.152
.149
.149
.149
.149
.149
.151
.151
.151
.151
.150
.150
.150

NPR

NNNNNNND—‘l—*r—‘l—‘I—'}—‘D—‘UJUJNNI—‘NNNNNMNND—'HI—'HHHHD—'MWNM?—'

.00
.00
.59
.00
.78
.00
.00
.00
.00
.00
.00
.00
.00
.59
.59
.60
.60
.60
.60
.60
.60
.00
.01
.60
.01
.84
.00
.00
.00
.00
.00
.00
.00
.61
.61
.61
.61
.61
.61
.61

ALPHA

.02
.01
.00
.01
.00
-1.36
.00
2.99
5.98
9.01
12.00
15.99
17.98
-1.39
-.02
3.02
5.98
9.00
11.99
15.99
17.98
19.99
19.97
19.98
19.98
19.98
15.98
17.97
19.98
23.99
27.98
31.98
34.98
15.98
17.97
19.97
23.97
27.99
31.98
34.97

CLT

.0108
.0270
.0297
.0288
.0322
.0100
.0274
.0333
.0363
.0347
.0343
.0516
.0550
-.0127
.0257
.1076
.1877
.2891
.3614
. 4850
.5675
.0349
.3839
.5841
. 7095
.9838
.0092
.0252
.0390
.0640
.0728
.0978
.1066
.4786
.5438
.6012
. 7145
.8347
. 9509
1.0279

Table 5. Continued

(a) Concluded

C(D-F)

-1

-1

-1

-1
-1

-1

-1

-1.
-1.
-1.
-1.

.0098
.0416
-1.
.9362
-2.
.0003
.0007
.0018
.0003
.0049
.0110
.0174
.0231
.5848
-1.
-1.
-1.
-1.
-1.

5589

7005

5878
5731
5526
5993
5196

.5058
.5380
.0254
.9574
.4836
-1.
-2.
.0158
.0182
.0280
.0414
.0574
.0821
.1011
-1.
-1.
.4631

8380
5838

5053
4827

4181
3635
2870
2299

CMT

.0077
.0749
.1185
.1658
.2354
.0031
.0094
.0095
.0099
.0108
.0117
.0244
.0296
.1245
.1239
.1258
.1249
.1254
.1182
.1096
.1040
.0269
.0770
.1187
.1607
.2355
.0119
.0229
.0298
.0448
.0592
.0846
.1024
L1249
.1140
.1095
.1031
.0862
.0630
.0453

CL

.0108
.0268
.0296
.0285
.0320
.0100
.0274
.0333
.0363
.0347
.0344
.0517
.0551
.0259
.0262
.0243
.0243
.0341
.0354
.0471
.0588
.0350
.0310
.0360
.0317
.0359
.0093
.0253
.0392
.0642
.0730
.0980
.1068
.0393
.0518
.0558
.0651
.0795
.0988
.1024

cbh

.0098
.0057
.0092
.0101
.0086
.0003
.0007
.0018
.0003
.0049
.0110
.0174
.0231
.0036
.0069
.0078
.0088
.0116
.0155
.0232
.0298
.0254
.0139
.0240
.0262
.0231
.0158
.0182
.0280
.0414
.0575
.0822
.1012
.0293
.0341
.0381
.0431
.0582
.0783
.0936

CM

.0077
.0140
.0239
.0142
.0205
.0031
.0094
.0095
.0099
.0108
.0117
.0244
.0296
.0196
.0208
.0179
.0177
.0226
.0243
.0348
.0456
.0269
.0120
.0270
.0228
.0268
.0119
.0229
.0298
.0448
.0592
.0846
.1024
.0202
.0309
.0356
.0422
.0601
.0832
.1015
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B2 e S e e 0 e e e b b e e b e e

MACH

.200
.200
.202
.202
.201
.200
.203
.204
.200
.201
.204
.200
.200
.200
.202
.201
.201
.199
.199
.203
.200
.901
.903
.898
.903
.899
.902
.901
.902
.897
.901
.902
.901
.899
.901
.899
.900
.901
.901
.902
.903
.899

NPR

[s= R NV, %]

U'anwU'anU'lU!Lﬂ)—H—-HHHHHH\AmwMH\J\JO\\I\Jc\\Jc\

.92
.03
.01
.00
.97
.95
.91
.90
.88
.85
.81
.74
.70
.98
.00
.99
.00
.00
.99
.04
.01
.09
.03
.01
.03
.02
.10
.09
.09
.09
.09
.09
.09
.08
.02
.02
.02
.02
.02
.02
.03
.01

ALPHA

O NN

12

.02
.02
.01
.02
.03
.04
.01
.99
.98
.99
.01
.03
.99
.99
.01
.01
.01
.01
.98
.99
.01
.02
.01
.02
.00
.00
.05
.01
.02
.02
.03
.01
.00
.01
.05
.01
.99
.00
.00
.02
16.
18.

04
01

Table 5. Continued

(b) Afterbody and nozzle

CLAFT

.0087
.0085
.0084
.0086
.0083
.0171
.0087
.0031
.0166
.0284
. 0406
.0535
.0594
.0170
.0088
.0031
.0174
.0303
. 0406
.0538
. 0602
.0034
.0035
.0035
.0033
.0034
.0017
.0032
.0050
.0054
.0049
.0005
.0130
.0184
.0017
.0033
.0047
.0056
.0045
.0003
.0145
.0203

CDAFT

.0083
.0083
.0084
. 0084
.0084
.0091
.0085
.0090
.0112
.0148
.0196
.0266
.0305
.0093
.0087
.0092
.0114
.0150
.0198
.0268
.0309
.0060
.0055
.0055
.0054
.0052
.0059
.0059
.0059
.0056
.0058
.0072
.0139
.0184
.0053
. 0054
.0053
.0050
.0052
.0067
.0139
.0184

CMAFT

.0084
.0082
.0080
.0082
.0079
.0153
.0082
.0017
.0144
.0272
.0418
.0560
.0629
.0150
.0081
.0020
.0155
.0287
.0419
.0569
.0640
.0028
.0030
.0029
.0027
.0028
.0010
.0026
.0052
.0061
.0070
.0053
. 0044
.0089
.0009
.0027
.0051
.0063
.0067
.0048
.0062
.0119

CLN

.0017
. 0007
.0017
.0017
.0023
.0051
.0023
.0008
.0032
.0054
.0093
.0126
.0159
.0008
.0008
.0018
.0022
.0045
.0075
.0130
.0151
.0058
.0054
.0042
. 0049
.0045
.0063
. 0047
.0019
.0002
.0022
.0146
.0161
.0194
.0058
. 0045
.0012
.0002
.0021
.0144
.0168
.0200

CDN

.0101
.0079
.0077
. 0066
.0051
.0105
.0099
.0095
.0105
.0146
.0179
.0221
.0246
.0076
.0072
.0072
.0076
.0089
.0120
.0151
.0169
.0018
.0023
.0014
.0014
.0021
.0021
.0022
.0025
.0030
.0026
.0005
.0034
.0065
.0016
.0016
.0019
.0023
.0019
.0012
.0043
.0071

CMN

.0030
.0048
.0032
.0032
.0022
.0022
.0031
.0031
.0032
.0030
.0051
.0083
.0116
.0045
.0041
.0003
.0032
. 0040
.0016
.0033
.0055
.0018
.0024
.0010
.0017
.0012
.0020
.0017
.0009
.0003
.0004
.0085
.0100
.0132
.0018
.0015
.0011
.0003
.0009
.0090
.0123
.0157




MACH

.602
.599
.604
.597
.598
.602
.599
.601
.600
.602
.600
.598
.599
.600
.599
.602
.600
.599
.599
.598
.600
.598
.600
.599
.600
.599
.600
.601
.600
.601
.598
.601
.599
.601
.600
.598
.600
.599

NPR

ok BN D W L0 0 (0 0 0 0 W0 W e e B e e b e B LD W

W Wwwwww

.03
.99
.00
.54
.97
.03
.03
.03
.03
.03
.03
.03
.02
.49
.50
.50
.50
.50
.50
.49
.50
.02
.97
.01
.55
.98
.03
.03
.02
.00
.98
.96
.49
.51
.51
.51
.52
.51

ALPHA

.03
.02
.02
.01
.01
-1.74
.03
2.99
6.00
8.99
12.00
15.99
17.98
-1.67
.01
3.00
6.01
9.00
12.00
16.00
17.99
20.02
20.01
19.99
20.00
20.00
16.59
17.96
19.98
23.98
27.98
31.96
16.78
17.99
19.99
23.99
27.99
31.98

Table 5. Continued

CLAFT

.0038
.0036
.0033
.0033
.0033
.0036
.0031
.0020
.0005
.0017
.0044
.0142
.0190
.0036
.0030
.0018
.0003
.0020
.0049
.0150
.0199
.0223
.0227
.0229
.0232
.0239
.0146
.0175
.0223
.0361
.0515
.0669
.0157
.0183
.0231
.0372
.0531
.0696

(b) Continued

CDAFT

.0055
.0051
.0051
.0052
.0051
. 0056
.0055
.0054
.0056

.0061 -.
.0070 -.
.0105 -.
.0130 -.

.0051
.0051
.0051
.0053

.0058 -,
L0067 -.
.0104 -,
.0130 -.
.0156 -.
.0155 -.
.0156 -,
.0157 -,
.0160 -.
.0109 -.
.0126 -
.0156 -.
.0255 -
.0392 -,
.0568 -.
.0110 -.
.0125 -,
L0157 -,
.0257 -,
.0400 -.
.0585 -

CMAFT

.0034
.0032
.0028
.0029
.0030
.0027
.0027
.0025
.0016
0004
0034
0129
0169
.0028
.0027
.0024
.0014
0007
0039
0138
0179
0213
0217
0220
0226
0236
0145
.0168
0214
.0367
0580
0841
0158
0178
0224
0383
0604
.0881

CLN

.0064
.0043
.0037
.0032
.0017
.0021
.0011
.0000
.0021
.0035
.0055
.0117
.0146
.0016
.0003
.0008
.0028
.0048
.0072
.0130
.0167
.0188
.0185
.0190
.0190
.0192
.0123
.0144
.0176
.0210
.0260
.0265
.0112
.0148
.0181
.0229
.0298
.0321

CDN

.0007
.0022
.0007
.0005
.0003
. 0006
.0007
.0013
.0010
.0009
.0001
.0027
.0050
.0013
.0011
.0011
.0007
.0002
.0009
.0033
.0058
.0077
.0056
.0070
.0069
.0077
.0033
.0049
.0073
.0128
.0205
.0281
.0029
.0044
.0064
.0114
.0194
.0269

CMN

.0014
.0010
.0005
.0002
.0013
.0002
.0000
.0005
.0002
.0005
.0018
.0051
.0065
.0003
.0004
.0006
.0012
.0022
.0040
.0081
.0106
.0075
.0071
.0100
.0105
.0122
.0045
.0057
.0074
.0093
.0149
.0195
.0061
.0083
.0101
.0137
.0221
.0293
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MACH

.151
. 149
.151
.151
.150
.149
.150
.149
.151
.151
.150
.148
.151
.150
.150
.151
.151
. 148
.151
.150
.148
.151
.150
.150
.150
.150
.149
.152
.149
. 149
. 149
<149
.149
.151
.151
.151
.151
.150
.150
.150

NPR

N B N BN BN NN = = fed pmd pmd e b (O QD N BN = BB RN B N 0D DO N et b e pd b b e el (D0 DN

.00
.00
.59
.00
.78
.00
.00
.00
.00
.00
.00
.00
.00
.59
.59
.60
.60
.60
.60
.60
.60
.00
.01
.60
.01
.84
.00
.00
.00
.00
.00
.00
.00
.61
.61
.61
.61
.61
.61
.61

ALPHA

.02
.01
.00
.01
.00
-1.36
.00
2.99
5.98
9.01
12.00
15.99
17.98
-1.39
-.02
3.02
5.98
9.00
11.99
15.99
17.98
19.99
19.97
19.98
19.98
19.98
15.98
17.97
19.98
23.99
27.98
31.98
34.98
15.98
17.97
19.97
23.97
27.99
31.98
34.97

CLAFT

. 0004
.0009
.0006
.0007
.0005
.0006
.0004
.0005
. 0004
.0050
.0089
.0136
.0193
.0030
.0020
.0017
.0007
.0028
.0038
.0106
.0160
.0196
.0176
.0188
.0185
.0190
.0119
.0160
.0191
.0285
.0392
.0527
.0590
.0111
.0169
.0212
.0281
.0383
.0518
.0575

Table 5. Concluded

(b) Concluded

CDAFT

.0059
.0068
.0068
.0068
.0070
. 0049
.0047
. 0046
.0048
.0055
.0073
.0095
.0121
.0063
.0062
.0062
.0064
.0069
.0076
.0103
.0128
L0144
.0144
.0148
.0149
.0156
.0109
.0124
.0142
.0207
.0303
.0441
.0534
.0104
.0124
.0149
.0205
.0300
.0441
.0533

CMAFT

.0010
.0003
.0006
.0009
.0009
.0007
.0004
.0013
.0016
.0031
.0075
.0123
.0178
.0038
.0030
.0031
.0012
.0008
.0014
.0091
.0146
.0219
.0202
.0216
.0215
.0225
.0152
.0188
.0208
.0300
.0432
.0627
.0742
.0111
.0182
.0222
.0287
.0407
.0610
.0714

CLN

.0111
.0277
.0302
.0293
.0325
.0106
.0278
.0338
.0360
.0298
.0255
.0381
.0359
.0289
.0283
.0259
.0236
.0313
.0316
.0365
.0428
.0154
.0134
.0172
.0132
.0169
.0027
.0092
.0200
.0357
.0337
.0453
.0479
.0281
.0350
.0346
.0371
.0412
.0470
.0449

CDN

.0038
.0125
.0023
.0033
.0017
. 0046
.0054
.0064
.0045
.0006
.0037
.0078
.0110
.0027
.0007
.0016
.0024
. 0047
.0079
.0129
.0169
.0109
.0005
.0092
.0114
.0076
.0049
.0059
.0138
.0207
.0272
.0380
.0477
.0189
.0217
.0232
.0226
.0282
.0342
.0403

CMN

.0067
.0143
.0244
.0151
.0214
.0038
.0091
.0108
.0115
.0077
.0042
.0121
.0118
.0234
.0238
.0211
.0188
.0219
.0228
.0256
.0310
.0049
.0082
.0053
.0013
.0043
.0033
.0041
.0090
.0148
.0160
.0219
.0283
.0090
.0127
.0134
.0135
.0194
.0222
.0301
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Table 6. Longitudinal Aerodynamic Characteristics for A/B Nozzle With 100/100
Dry Sidewalls and 6,5, = 0°

MACH

.202
.201
.200
.200
.201
.904
.896
.897
.900
.902
.601
.600
.600
.601
.599
.601
.600
.599
.598
.601
.602

NPR

PP R R e, LDWRHRESNUVWN P OSSN SW

.97
.01
.94
.01
.04
.10
.01
.00
.00
.01
.03
.99
.03
.50
.99
.03
.03
.03
.03
.03
.03

ALPHA

.00
.01
.02
.03
.02
-.02
.02
.02
.01
.02
-.03
.01
.01
.01
.00
-1.81
2.02
-.01
6.00
8.97
11.98

CLT

.0091
.0094
.0113
.0121
.0116
.0106
.0095
.0102
.0099
.0099
.0056
.0038
.0046
.0045
.0037
.0051
.0017
.0038
.0010
.0054
.0109

(a) Total aft end

C(D-F)

.0168
-.0151
-.0445
-.0774
-.1089

.0033
-.0263
-.0520
~-.1056
-.1596

.0038
-.0605
-.1211
-.1496
-.2406

.0042

.0038

.0037

.0039

.0049

.0067

CMT

.0039
.0069
.0122
.0164
.0192
.0063
.0086
.0124
.0175
.0228
.0041
.0091
.0163
.0190
L0275
.0036
.0032
.0036
.0022
-.0009
-.0060

CL

.0091
.0095
.0113
.0122
.0117
.0106
.0095
.0102
.0099
.0099
.0056
.0039
.0046
.0045
.0037
.0052
.0017
.0038
.0010
.0055
.0110

Ccb

.0168
.0161
.0158
.0137
.0123
.0033
.0031
.0039
.0030
.0014
.0038
.0037
.0050
.0048
.0041
.0042
.0038
.0037
.0039
.0049
.0067

CM

.0039
.0038
.0063
.0075
.0073
.0063
.0057
.0069
.0068
.0071
.0041
.0027
.0038
.0038
.0036
.0036
.0032
.0036
.0022
-.0009
-.0060

31



Table 6. Concluded

(b) Afterbody and nozzle

MACH NPR  ALPHA CLAFT  CDAFT  CMAFT CLN CDN CMN
1.202 .97 .00 -.0084 .0084 .0081 -.0007 .0085 -.0042
1.201 3.01 .01  -.0083 .0084  .0080 -.0011 .0077 -.0042
1.200 4.94 .02 -.0084 .0085 .0080 -.0029 .0074 -.0017
1.200 7.01 .03  -.0085 .0085 .0080 -.0037 .0052 -.0005
1.201  9.04 .02 -.0084 .0085 .0080 -.0033 .0038 -.0006

.904 1.10 -.02 -.0036 .0060 .0032 -.0071 -.0027 .0031

.896 2.01 .02 -.0038 .0054 .0035 -.0056 -.0023 .0022

.897  3.00 .02 -.0038 .0055 .0034 -.0064 -.0016 .0035

.900 5.00 .01 -.0037 .0054 .0033 -.0062 -.0023 .0035

.902 7.01 .02 -.0036 .0051 .0032 -.0064 -.0037 .0039

.601 1.03 -.03 -.0033 .0053 .0031 -.0023 -.0015 .0010

.600  1.99 .01  -.0031 .0050 .0028 -.0008 -.0012 -.0002

.600 3.03 .01 -.0031 .0050 .0030 -.0015 .0000 .0008

.601  3.50 .01 -.0031 .0050 .0029 -.0015 -.0002 .0009

.599  4.99 .00 -.0025 .0050 .0022 -.0012 -.0009 .0013

.601  1.03 -1.81 -.0035 .0053 .0028 -.0016 -.0011 . 0009

.600 1.03 2.02 -.0023 .0052 .0027 .0006 -.0014 .0005

.599 1.03 -.01 -.0031 .0052 .0029 -.0007 -.0015 .0007

.598 1.03 6.00 -.0003 .0054  ,0015 .0013 -.0016  .0007

.601 1.03 8.97 .0019  .0059 -.0005 .0036 -.0010 -.0004

.602 1.03 11.98 .0048  .0068 -.0038 .0062 -.0001 -.0022
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Table 7. Longitudinal Aerodynamic Characteristics for A/B Nozzle With 100/100
A/B Sidewalls and 6, p = 15°

MACH

.205
.199
.197
.197
.202
.197
.195
.200
.198
.197
.201
.199
.202
.200
.202
.200
.200
.199
.900
.900
.900
.899
.899
.901
.901
.899
.899
.899
.903
.898
.902
.902
.898
.902
.899
.898
.900
.902
.896

NPR
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.93
.00
.00
.98
.91
.96
91
.89
.85
.80
.73
.66
.62
.01
.04
.98
.99
.06
.06
.00
.01
.01
.98
.07
.06
.06
.06
.06
.06
.03
.01
.02
.99
.01
.99
.98
.01
.02
.99

ALPHA

.03
.02
.00
.03
.01
.01
.03
.03
.99
.02
.00
.00
.99
.98
.03
.99
.99
.98
.02
.01
.01
.03
.04
.01
.00
.02
.03
.02
.00
.01
.00
.02
.00
.00
.00
.98
.00
.00
.97

CLT

.0065
.0086
.0214
.0312
.0385
.0187
.0080
.0081
.0260
.0397
.0575
.0740
.0851
.0202
.0333
.0506
.0853
.1024
.0021
.0185
.0275
. 0448
.0600
.0024
.0035
.0073
.0053
.0104
.0262
.0437
.0504
.0399
.0446
.0542
.0575
.0701
.0880
.1153
.1250

C(D-F)

.0161
-.0121
-.0404
-.0693
-.0970

.0173

.0169

.0190

.0242

.0317

.0417

.0537

.0609
-.0700
-.0694
-.0656
-.0517
-.0435

.0049
-.0208
-.0448
-.0953
-.1452

.0045

.0050

.0052

.0055

.0073

.0128

.0251

.0328
-.0961
-.0950
-.0920
-.0892
-.0845
-.0761
-.0581
-.0498

CMT

.0007
.0245
.0439
.0583
.0682
.0083
.0012
.0116
.0288
.0423
.0635
.0844
.0979
.0533
.0593
.0668
.0885
.1023
.0133
.0390
.0532
.0788
.1000
.0142
.0140
.0142
.0131
.0175
.0278
.0437
.0487
.0788
.0786
.0795
.0785
.0831
.0928
.1109
.1199

CL

.0065
.0009
.0045
.0071
.0074
.0187
.0080
.0081
.0260
.0397
.0576
.0741
.0853
.0010
.0090
.0222
.0484
.0608
.0021
.0089
.0107
.0149
.0173
.0024
.0035
.0073
.0054
.0104
.0263
.0439
.0505
.0136
.0148
.0193
.0174
.0249
.0379
.0589
.0654

CcD

.0161
.0163
.0164
.0158
.0146
.0173
.0169
.0190
.0242
.0317
.0417
.0537
.0610
.0158
.0158
.0176
.0282
.0355
.0049
.0050
.0057
.0057
.0056
.0045
.0050
.0052
.0055
.0073
.0128
.0251
.0328
.0053
.0057
.0067
.0077
.0103
.0163
.0304
.0372

CM

.0007
.0101
.0195
.0239
.0244
.0083
.0012
.0116
.0288
.0423
.0635
.0844
.0979
.0189
.0249
.0326
.0542
.0676
.0133
.0242
.0276
.0354
.0389
.0142
.0140
.0142
.0131
.0175
.0278
.0437
. 0487
.0356
.0353
.0364
.0352
.0397
.0494
.0676
.0763
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MACH

.600
.602
.601
.601
.600
.597
.600
.601
.602
.600
.602
.601
.599
.602
.601
.602
.602
.602
.601
.602
.601
.599
.599
.599
.598
.599
.599
.601
.601
.598
.600
.600
.598
.602
.600
.599
.600
.599

NPR
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.02
.99
.99
.52
.02
.04
.02
.02
.01
.01
.01
.00
.99
.54
.50
.50
.50
.49
.49
.49
.99
.98
.02
.00
.54
.03
.48
.00
.98
.97
.95
.93
.53
.54
.54
.53
.54
.54

ALPHA

.02
.01
~-.04
-.05
-.05
-2.12
-.03
3.01
6.02
8.97
12.01
16.02
17.98
-2.04
.02
3.02
5.98
8.99
12.00
16.01
18.01
20.01
19.97
19.98
19.99
19.97
18.01
16.49
19.98
23.97
27.99
31.98
16.10
17.98
19.98
23.96
27.98
31.97

CLT

.0063
.0395
.0567
.0659
.0905
.0066
.0101
.0140
.0186
.0224
.0283
.0439
.0521
.0613
.0678
.0786
.0899
.1017
.1136
.1391
L0477
.0567
.1082
.1425
.1617
.2143
L1531
.0423
.0560
.0722
.0904
.1055
.1376
.1494
.1615
.1897
.2113
.2362

Table 7. Continued

C(D-F)

.0059
-.0506
-.1054
-.1353
-.2203

.0049

.0055

.0067

.0090

.0114

.0147

.0230

.0287
-.1383
-.1339
-.1289
-.1235
-.1171
-.1098
-.0946

.0268

.0336
-.0110
-.0565
-.0821
-.1521
-.0860

.0229

.0333

.0498

.0700

.0958
-.1006
-.0900
-.0809
-.0562
-.0295

.0072

CMT

-.0195
-.0684
-.0928
-.1061
-.1419
-.0200
-.0211
-.0228
-.0262
-.0301
-.0362
-.0499
-.0563
-.1059
-.1065
-.1087
~.1125
-.1173
-.1236
-.1393
~.0549
-.0615
-.1160
-.1403
-.1546
~.1915
-.1478
-.0507
-.0620
-.0795
-.1014
-.1316
-.1413
-.1470
~.1544
-.1764
-.1961
-.2330

CL

.0063
.0183 .
.0193
.0208
.0233
.0066
.0101
.0140
.0186
.0225
.0284
. 0440
.0522
.0209
.0228
.0266
.0308
.0357
. 0407
.0577
.0478
.0568
.0673
.0681
.0694
.0727
.0668
L0424
.0561
.0724
.0906
.1058
.0535
.0624
.0699
.0896
.1038
.1213

CD

.0059
. 0066
.0069
.0068
.0071
.0049
.0055
.0067
.0090
.0114
.0147
.0230
.0287
.0061
.0069
.0086
.0111
.0140
.0180
.0275
.0268
.0336
.0374
.0376
.0378
.0395
.0341
.0229
.0333
.0499
.0700
.0959
.0255
.0317
.0382
.0566
.0759
.1052

CM

.0195
.0354
.0360
.0385
. 0442
.0200
.0211
.0228
.0262
.0301
.0362
.0499
.0563
.0381
.0394
.0419
.0457
.0506
.0567
.0725
.0549
.0615
.0818
.0828
.0861
.0933
.0805
.0507
.0620
.0795
.1014
.1316
.0727
.0793
.0864
.1081
.1280
.1646




MACH

.152
.153
.150
.150
.149
.152
.152
.153
.152
.152
.152
.151
.154
.153
.152
.152
.152
.151
.151
.151
.155
.151
.152
.152
.152
.152
.152
.152
.152
.150
.149
.149
.151
.151
.150
.151
.150
.150
.150

NPR

PO RN NN S PSR R EWRRNR RN NRNN RS ss EN =

.00
.01
.60
.98
.00
.00
.00
.00
.00
.00
.00
.00
.59
.60
.60
.60
.60
.60
.60
.60
.00
.02
.61
.99
.83
.00
.00
.00
.00
.00
.00
.00
.62
.60
.59
.59
.59
.59
.59

ALPHA

-.03
-.02
-.02
-1.90
.01
3.00
6.03
8.99
11.99
16.02
17.93
-2.03
-.01
2.98
5.98
9.03
11.95
15.92
17.55
20.01
19.97
19.96
19.98
19.96
15.98
17.98
19.98
23.98
27.99
31.98
35.18
15.97
17.99
19.96
23.97
27.97
31.97
34.98

—

Y =

CLT

.0225
.3415
.5170
.5951
.0272
.0167
.0225
.0201
.0289
.0315
. 0407
.0406
.4535
.5103
.5946
.6703
. 7468
.8229
.9291
L9714
.0528
.7021
.0236
.2146
L6433
.0259
.0435
.0560
.0711
.0942
.1157
L1164
.9573
.9989
.0530
.1293
.2273
.3133
.3705

Table 7. Concluded

C(D-F)

-1

-1

-1

-1
-2

-1

-1
-1

.0116
.9091
.4535
L7745
.0023
.0029
.0019
.0016
.0039
.0106
.0166
.0201
-1.
.3795
-1.
.3490
-1.
-1.
.2101
-1.
.0283
.7146
-1.
. 4097
.0324
.0236
.0325
.0412
.0564
.0799
.1085
.1231
.2009
-1.
.1068
.0273
.9397
.8512
.7700

3913
3851

3106
2705
1832

1245

1471

CMT

.0065
.5587
.8291
.9299
.0255
.0205
.0219
.0219
.0279
.0316
.0451
.0495
.7918
.7968
.8158
.8186
.8232
.8336
.8516
.8622
.0520
.6093
.8559
. 9647
1.2419
.0428
.0553
.0630
.0738
.0964
.1212
.1340
.8685
.8727
.8830
.8827
.9049
.9325
L9499

CL

.0225
.0078
.0075
.0011
.0272
.0167
.0225
.0201
.0289
.0316
.0408
.0407
.0182
.0244
.0234
.0269
.0316
.0379
.0526
.0561
.0530
.0619
.0632
.0610
.0638
.0260
.0436
.0561
.0713
.0944
.1160
.1166
.0657
.0744
.0860
.0840
.1027
.1069
.1160

CcD

.0116
.0074
.0060
.0150
.0023
.0029
.0019
.0016
.0039
.0107
.0166
.0201
.0094
.0098
.0106
.0143
.0174
L0244
.0325
.0392
.0283
.0405
.0525
.0456
.0415
.0237
.0325
.0412
.0564
.0799
.1086
.1232
.0640
.0684
.0762
.0831
.0995
.1169
.1328

CM

.0065
.0388
.0399
.0229
.0255
.0205
.0219
.0219
.0279
.0316
.0451
.0495
.0418
.0447
.0454
.0484
.0527
.0600
.0747
.0821
.0520
.0743
.0813
.0730
.0922
.0428
.0553
.0630
.0738
.0964
.1212
.1340
.0816
.0929
.1011
.1027
.1220
.1419
.1598
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1.
1.
1.
1.
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Table 8. Longitudinal Aerodynamic Characteristics for A/B Nozzle With 50 /50 A/B
Sidewalls and &, , = 15°

ACH

199
200
200
194
200

.899
.904
.901
.899
.901
.601
.601
.601
.601
.601

MACH

1.199
1.200
1.200
1.194
1.200
.899
.904
.901
.899
.901
.601
.601
.601
.601
.601

NPR

MWW RL, VNN - O W

NPR

MWW U NNE O~ W

.91
.02
.97
.96
.02
.06
.04
.99
.04
.02
.02
.00
.04
.52
.05

.91
.02
.97
.96
.02
.06
.04
.99
.04
.02
.02
.00
.04
.52
.05

ALPHA

ALPHA

.02
.02
.02
.02
.03
.03
.01
.02
.04
.04
.03
.03
.03
.03
.03

.02
.02
.02
.02
.03
.03
.01
.02
.04
.04
.03
.03
.03
.03
.03

CLT

-.0076
.0084
.0217
.0331
.0411

-.0003
.0135
.0250
.0451
. 0604
.0079
.0344
.0564
.0655
.0919

(a) Total aft end

C(D-F)

.0181
-.0110
-.0379
-.0673
-.0963

.0059
-.0215
-.0438
-.0945
-.1437

.0067
-.0520
-.1075
-.1338
-.2186

CMT

.0030
-.0227
-.0433
-.0599
-.0708
-.0099
-.0311
-.0488
-.0782
-.1002
-.0180
~-.0573
-.0904
-.1032
-.1418

CL

-.0076
-.0010
.0052
.0090
.0098
-.0003
.0050
.0086
.0153
.0178
.0079
.0159
.0187
.0207
.0250

(b) Afterbody and nozzle

CLAFT

.0080
.0067
.0055
.0044
.0035
.0011
. 0006
.0014
.0030
.0040
.0015
.0039
.0049
.0055
.0071

CDAFT

.0086
.0087
.0087
.0087
.0086
.0056
.0050
.0049
. 0048
. 0046
.0051
.0048
.0048
. 0048
.0048

CMAFT

.0078
. 0064
.0053
.0041
.0030
.0007
.0032
.0044
. 0066
.0081
.0040
.0073
.0087
.0096
.0117

CLN

. 0004
.0057
.0107
.0134
.0133
.0008
.0044
.0072
.0123
.0138
. 0064
.0120
.0138
.0152
.0179

CD

.0181
.0177
.0181
.0175
.0165
.0059
.0054
.0061
.0068
. 0068
.0067
.0067
.0077
.0081
.0089

CDN

.0094
.0089
. 0094
.0088
.0079
.0003
. 0004
.0011
.0020
.0022
.0016
.0020
.0029
.0033
. 0040

CM

.0030
-.0087
-.0194
-.0254
-.0263
-.0099
-.0186
-.0243
-.0350
-.0392
-.0180
-.0305
-.0343
-.0373
-.0449

CMN

.0047
.0152
.0246
.0295
.0293
.0092
.0154
.0199
.0284
.0311
.0140
.0232
.0256
.0277
.0332
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Table 9. Longitudinal Aerodynamic Characteristics for A/B Nozzle With 25 /25 A/B
Sidewalls and 6, ;, = 15°

MACH

.200
.200
.201
.201
.200
.199
.202
.200
.198
.201
.203
.200
.203
.200
.198
.199
.200
.199
.199
.901
.898
.901
.901
.900
.899
.902
.899
.902
.903
.900
.899
.898
.901
.900
.900
.900
.898
.898
.898
.899

NPR

O~ LW

USSPV = e P e =N WR NN N NN

.91
.02
.04
.04
.01
.93
.90
.88
.86
.80
.74
.64
.61
.02
.00
.01
.02
.02
.02
.07
.03
.00
.01
.04
.07
.07
.06
.06
.07
.06
.03
.01
.03
.01
.00
.00
.99
.99
.99
.00

ALPHA

.00
.00
-.02
-.04
-.03
-2.02
-.03
3.01
6.00
9.02
12.02
16.01
18.00
-2.02
.00
3.02
6.00
8.98
1.99
-.02
-.02
-.03
~-.03
-.04
-2.01
.02
3.01
6.00
8.99
12.02
16.03
18.00
~2.04
.01
2.97
5.99
8.99
11.99
15.98
18.00

CLT

.0060
.0079
.0219
.0334
.0420
.0178
.0070
.0091
.0275
.0412
.0589
.0780
.0894
.0208
.0337
.0519
.0727
.0888
.1070
.0018
.0120
.0256
.0463
.0639
.0009
.0003
.0062
.0040
.0098
.0258
.0436
.0521
.0406
.0449
.0546
.0569
.0701
.0891
L1179
.1284

(a) Total aft end

C(D-F)

.0168
~-.0119
-.0396
-.0681
-.0971

.0174

.0171

.0195

.0240

.0317

.0413

.0543

.0621
-.0684
-.0674
-.0646
-.0591
-.0501
-.0403

.0051
-.0230
-.0447
-.0936
-. 1444

.0048

.0051

.0052

.0051

.0069

.0127

.0254

.0332
-.0958
-.0941
-.0913
-.0888
-.0840
-.0752
-.0572
-.0472

CMT

.0003
.0217
.0439
.0615
.0735
.0083
.0007
.0116
.0276
.0401
.0610
.0834
.0976
.0561
.0620
.0695
.0817
.0921
.1073
.0090
.0243
.0462
.0782
.1040
.0096
.0086
.0103
.0081
.0136
.0240
.0393
.0463
.0784
.0778
.0790
.0768
.0818
.0927
L1126
.1210

CL

.0060
.0010
.0055
.0096
.0107
.0178
.0070
.0092
.0276
.0413
.0590
.0781
.0895
.0001
.0099
.0237
.0401
.0520
.0660
.0018
.0039
.0100
.0174
.0214
.0008
.0003
.0062
.0040
.0099
.0259
.0437
.0522
.0151
.0159
.0204
.0177
.0257
.0399
.0623
.0699

CcD

.0168
.0168
.0174
.0170
.0157
.0174
.0171
.0195
.0240
.0317
.0413
.0543
.0622
.0173
L0174
.0188
.0229
.0301
.0379
.0051
.0044
.0057
.0070
.0071
.0048
.0051
.0052
.0051
.0069
.0127
.0254
.0333
.0061
.0066
.0075
.0081
.0109
.0172
.0316
.0395

CM

.0003
.0089
.0201
.0269
.0282
.0083
.0007
.0116
.0276
.0401
.0610
.0834
.0976
.0216
.0275
.0349
.0471
.0575
.0727
.0090
.0129
.0238
.0362
L0424
.0096
.0086
.0103
.0081
.0136
.0240
.0393
.0463
.0363
.0358
.0371
.0349
.0398
.0507
.0706
.0790
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MACH

.600
.601
.600
.600
.601
.600
.598
.600
.600
.603
. 600
.599
.601
.598
.600
.603
.601
.601
.600
.600
.597
.601
.599
.600
.600
.599
.600
.599
.597
.600
.601
.600
.598
.601
.598
.600
.600
.601

NPR

el el e el el el Y AR VS B S BN S0l S

W wwwww

0 W W N

W wwwiww

.02
.99
.00
.50
.01
.03
.02
.02
.02
.01
.01
.00
.99
.49
.52
.52
.51
.51
.51
.51
.50
.98
.03
.01
.51
.00
.00
.99
.98
.97
.95
.92
.49
.50
.49
.49
.49
.50

ALPHA
.01

-.03
-.04
-.04
-2.02
-.02
2.99
5.99
9.02
12.00
15.99
18.01
-2.04
~.02
3.00
6.01
8.98
12.00
15.99
17.96
20.00
19.97
19.95
19.96
19.95
16.52
17.97
19.96
23.97
27.96
31.96
16.15
17.95
19.97
23.98
27.95
31.97

CLT

.0067
.0273
.0528
.0623
.0911
.0060
.0097
.0121
.0165
.0215
.0266
.0420
.0502
.0572
.0644
.0748
.0862
.0981
.1105
.1371
.1514
.0543
.0989
.1370
.1565
L2120
.0392
L0446
.0519
.0701
.0885
.1065
.1312
.1431
.1557
.1834
.2075
.2333

Table 9. Continued

(a) Continued

C(D-F)

.0057
~.0544
-.1076
-.1344
-.2165

.0053

.0056

.0067

.0085

.0109

.0137

.0221

.0280
-.1366
-.1351
-.1302
-.1257
-.1200
-.1126
-.0978
-.0896

.0326
-.0179
-.0596
-.0820
-.1488

.0219

.0256

.0317

. 0487

.0691

.0964
-.0999
-.0903
-.0817
-.0564
-.0282

.0098

CMT

.0167
.0448
.0838
.0982
.1409
.0163
.0177
.0185
.0218
.0261
.0315
L0447
.0512
.0976
.0994
.1010
.1047
.1096
.1160
.1326
. 1413
.0557
.0960
.1293
.1456
.1902
.0452
.0492
.0555
.0752
.0995
.1343
.1310
.1373
.1453
.1683
.1926
.2326

CL

.0067
.0101
.0176
.0198
.0263
.0060
.0097
.0121
.0166
.0216
.0267
.0421
.0503
.0194
.0215
.0249
.0290
.0339
.0392
.0570
.0665
.0544
.0611
.0648
.0676
.0734
.0394
. 0448
.0520
.0702
.0887
.1067
.0506
.0595
.0674
.0875
.1040
.1231

CD

.0057
.0045
.0067
. 0065
.0088
.0053
.0056
.0067
.0085
.0109
.0137
.0221
.0280
.0064
.0075
.0088
.0108
.0134
.0174
.0268
.0328
.0326
.0334
.0361
.0374
.0420
.0219
.0256
.0317
. 0487
.0692
.0965
L0244
.0303
.0366
.0550
.0763
.1066

CM

.0167
.0209
.0329
.0366
.0469
.0163
L0177
.0185
.0218
.0261
.0315
.0447
.0512
.0357
.0374
.0395
.0431
.0479
.0542
.0708
.0790
.0557
.0707
.0783
.0836
.0956
.0452
.0492
.0555
.0752
.0995
.1343
.0690
.0759
.0835
.1068
.1310
.1712




MACH

.150
.151
.151
.151
.150
.152
.150
.151
.150
.151
.151
.150
.151
.150
.150
.151
.150
.150
.150
.149
.149
.149
.149
.152
.153
.148
.149
.152
. 149
.150
.147
.148
.151
.149
.149
.148
.151
.151
.151
.150

NPR

NNNMMNNl—')—'l—‘b—‘P—‘O—‘l—lww(\)NHNN!\JMNI\JN!\)D—'!—‘D—‘H’—‘D—‘HHWL@NMI—‘

.00
.01
.60
.04
.76
.00
.00
.00
.00
.00
.00
.00
.00
.61
.62
.62
.61
.61
.62
.61
.61
.00
.01
.63
.01
.80
.00
.00
.00
.00
.00
.00
.00
.59
.59
.59
.59
.59
.59
.59

ALPHA
.01

-.03
-.01
.00
-1.59
-.01
3.00
6.00
8.99
11.99
16.01
18.00
-1.96
-.03
3.00
5.99
8.99
12.00
15.98
17.86
20.02
19.99
19.97
19.96
19.96
15.98
17.96
19.97
23.98
27.97
31.96
34.98
15.97
17.97
19.97
23.97
27.98
31.97
34.96

P e el

CLT

.0381
.3226
.5032
.5978
.7907
.0037
.0069
.0094
.0100
.0265
.0318
.0454
.0570
. 4407
.4888
.5685
.6488
.7235
.8115
.9226
.9750
.0456
.6358
.9586
.1527
.6637
.0164
.0288
.0395
.0627
.0822
.1044
.1124
.9017
. 9496
.0036
.0624
.1614
.2535
.3192

Table 9. Continued

(a) Concluded

C(D-F)

-1

-1

-1

.0067
.9357
.4329
-1.
-2.
.0039
.0021
.0036
.0022
.0204
.0253
.0338
.0415
.4704
-1.
.4201
-1.
-1.
-1.
-1,
-1.
.0299
. 7864
-1.
-1.
-2.

.0196

.0227

.0303

.0452

.0643

.0921

.1085
-1.
-1.
-1.
-1.
. 9947
.8971
.8259

8054
4841

4546

3950
3563
3211
2663
2313

1737
4304
1388

2614
2232
1961
0811

CMT

.0327
.4342
.7190
.8609
.1401
.0187
.0176
.0196
.0192
.0290
.0333
.0459
.0570
.7199
.7189
.7168
.7221
.7258
.7373
.7595
.7691
.0483
.4466
.7178
.8519
1.2027
.0349
.0458
.0512
.0664
.0871
.1149
.1321
L7492
.7563
.7635
. 7481
.7687
.7965
.8207

CL

.0381
.0426
.0416
.0340
L0446
.0037
.0069
.0095
.0100
.0265
.0319
.0455
.0572
.0228
.0211
.0260
.0289
.0292
.0415
.0519
.0601
. 0457
.0359
.0313
.0418
. 0456
.0165
.0289
.0397
.0629
.0824
.1046
.1126
.0367
.0424
.0459
.0548
.0746
.0921
.0989

CD

.0067
.0145
.0297
.0265
.0188
.0039
.0021
.0036
.0022
.0204
.0253
.0339
.0415
.0292
.0289
.0290
.0294
.0349
.0387
.0490
.0568
.0300
.0270
.0358
.0385
.0459
.0197
.0227
.0304
.0453
.0644
.0922
.1086
0444
0474
.0507
.0570
.0722
.0943
.1101

CM

.0327
L0446
.0520
L0462
.0615
.0187
.0176
.0196
.0192
.0290
.0333
.0459
.0570
.0434
.0433
.0446
L0472
.0503
.0585
.0741
.0827
.0483
.0494
.0562
.0680
.0818
.0349
.0458
.0512
.0664
.0871
.1149
.1321
.0675
.0768
.0791
.0866
.1060
.1320
.1515

39
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MACH

.200
.200
.201
.201
.200
.199
.202
.200
.198
.201
.203
.200
.203
.200
.198
.199
.200
.199
.199
.901
.898
.901
.901
.900
.899
.902
.899
.902
.903
.900
.899
.898
.901
.900
.900
.900
.898
.898
.898
.899

NPR

NeRL NI U, L]

VLSSV UWUN RPN WN RSN SN NN NN

.91
.02
.04
.04
.01
.93
.90
.88
.86
.80
.74
.64
.61
.02
.00
.01
.02
.02
.02
.07
.03
.00
.01
.04
.07
.07
.06
.06
.07
.06
.03
.01
.03
.01
.00
.00
.99
.99
.99
.00

ALPHA

.00
.00
-.02
-.04
-.03
-2.02
-.03
3.01
6.00
9.02
12.02
16.01
18.00
-2.02
.00
3.02
6.00
8.98
1.99
-.02
-.02
-.03
-.03
-.04
-2.01
.02
3.01
6.00
8.99
12.02
16.03
18.00
-2.04
.01
2.97
5.99
8.99
11.99
15.98
18.00

(b) Afterbody and nozzle

CLAFT

.0083
.0071
.0060
.0048
.0037
.0166
.0081
. 0046
.0191
.0303
L0421
.0546
.0617
.0130
.0044
.0081
.0222
.0324
L0434
.0013
.0001
.0013
.0030
.0042
.0001
.0012
.0024
.0036
.0019
.0031
.0181
.0227
.0044
.0029
.0020
.0014
.0037
.0097
L0243
.0295

Table 9. Continued

CDAFT

.0084
.0085
.0085
.0085
.0084
.0092
.0086
.0092
.0115
.0154
.0201
.0269
.0312
.0091
.0087
.0095
.0119
.0160
.0206
.0055
.0050
.0049
.0047
. 0044
.0054
.0055
.0056
.0054
.0057
.0076
.0151
.0193
.0045
.0048
.0050
.0051
.0058
.0084
.0162
.0209

CMAFT

.0081
.0068
.0057
.0045
.0032
.0149
.0077
.0031
.0167
.0298
.0435
.0572
.0660
.0113
.0040
.0067
.0201
.0321
.0446
.0004
.0021
.0043
.0067
.0084
.0019
.0005
.0012
.0028
.0027
.0002
.0110
.0150
.0084
.0066
.0052
.0041
.0041
.0081
.0196
.0248

CLN

.0024
.0061
.0115
.0144
.0144
.0012
.0011
.0046
.0085
.0110
.0169
.0236
.0277
.0130
.0143
.0156
.0179
.0196
.0227
.0031
.0040
.0087
.0144
.0172
.0008
.0015
.0085
.0076
.0118
.0228
.0256
.0295
.0106
.0129
.0184
.0163
.0220
.0302
.0381
.0404

CDN

.0084
.0083
.0088
.0085
.0073
.0082
.0085
.0103
.0125
.0163
.0212
.0274
.0310
.0082
.0087
.0093
.0109
.0141
.0173
. 0004
.0006
.0008
.0023
.0027
.0006
.0004
.0004
.0003
.0012
.0051
.0103
.0140
.0017
.0018
.0025
.0030
.0051
.0088
.0154
.0186

CMN

.0078
.0157
.0258
.0314
.0314
.0067
.0070
.0085
.0109
.0104
.0175
.0262
.0316
.0329
.0315
.0282
.0269
.0254
.0280
.0086
.0108
.0195
.0295
.0340
.0077
.0080
.0115
.0109
.0163
.0242
.0283
.0313
.0279
.0292
.0319
.0308
.0357
.0426
.0510
.0542




MACH

.600
.601
.600
. 600
.601
.600
.598
.600
.600
.603
.600
.599
.601
.598
.600
.603
.601
.601
. 600
.600
.597
.601
.599
.600
.600
.599
.600
.599
.597
.600
.601
.600
.598
.601
.598
.600
.600
.601

NPR

= = b D = e U W00

W www W www

=W W N

W W W ww

.02
.99
.00
.50
.01
.03
.02
.02
.02
.01
.01
.00
.99
.49
.52
.92
.51
.51
.51
.51
.50
.98
.03
.01
.51
.00
.00
.99
.98
.97
.95
.92
.49
.50
.49
.49
.49
.50

ALPHA

.01
-.04
-.03
-.04
-.04

-2.02
-.02
2.99
5.99
9.02

12.00

15.99

18.01

-2.04
-.02
3.00
6.01
8.98

12.00

15.99

17.96

20.00

19.97

19.95

19.96

19.95

16.52

17.97

19.96

23.97

27.96

31.96

16.15

17.95

19.97

23.98

27.95

31.97

CLAFT

.0012
.0028
.0047
.0053
.0074
.0000
.0014
.0030
.0048
.0074
.0102
.0199
.0251
.0042
.0054
.0073
.0094
.0120
.0148
.0257
.0310
.0275
.0306
.0320
.0331
.0355
.0198
.0229
.0273
.0416
.0556
.0730
.0242
.0283
.0328
.0485
.0612
.0792

Table 9. Continued

(b) Continued

CDAFT

.0052
.0049
.0049
.0049
.0049
.0050
.0051
.0054
.0059
.0067
.0079
.0119
.0148
.0046
.0048
.0053
.0061
.0071
.0087
.0134
.0166
.0173
.0183
.0189
.0193
.0203
.0123
.0141
.0173
.0277
. 0409
.0600
.0132
.0158
.0192
.0308
. 0440
.0644

CMAFT

.0039
.0060
.0086
.0095
.0124
.0030
.0040
.0050
.0064
.0088
.0120
.0214
.0258
.0088
.0096
.0109
.0126
.0153
.0185
.0291
.0339
.0292
.0336
.0358
.0373
.0409
.0226
.0251
.0293
.0453
.0646
.0936
.0290
.0324
.0371
.0550
.0731
.1037

CLN

.0055
.0073
.0129
.0145
.0189
. 0060
.0083
.0091
.0117
.0142
.0165
.0221
.0253
.0152
.0161
.0176
.0196
.0219
.0244
.0313
.0355
.0270
.0305
.0328
.0346
.0378
.0196
.0218
.0247
.0286
.0332
.0337
.0264
.0313
.0346
.0390
.0428
.0439

CDN

. 0004
.0004
.0017
.0016
.0039
.0003
. 0006
.0013
.0026
. 0042
.0058
.0102
.0132
.0018
.0027
.0034
.0047
.0062
.0087
.0134
.0162
.0153
.0151
.0171
.0180
.0216
.0096
.0115
L0144
.0211
.0282
.0365
.0112
.0145
.0173
.0242
.0324
L0422

CMN

.0129
.0149
.0243
.0271
.0345
.0132
.0137
.0135
.0154
.0173
.0196
.0233
.0254
.0269
.0278
.0286
.0305
.0326
.0357
.0417
L0451
.0265
.0371
L0425
.0462
.0547
.0226
.0241
.0262
.0299
.0349
.0407
. 0400
.0435
.0463
.0518
.0579
.0675
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MACH

.150
.151
.151
.151
.150
.152
.150
.151
.150
.151
.151
.150
.151
.150
.150
.151
.150
.150
.150
.149
.149
. 149
.149
.152
.153
.148
<149
.152
. 149
.150
.147
.148
.151
.149
.149
. 148
.151
.151
.151
.150

NPR

.00
.01
.60
.04
.76
.00
.00
.00
.00
.00
.00
.00
.00
.61
.62
.62
.61
.61
.62
.61
.61
.00
.01
.63
.01
.80
.00
.00
.00
.00
.00
.00
.00
.59
.59
.59
.59
.59
.59

ALPHA

.01
-.03
-.03
-.01

.00

-1.59
-.01
3.00
6.00
8.99

11.99

16.01

18.00

-1.96
-.03
3.00
5.99
8.99

12.00

15.98

17.86

20.02

19.99

19.97

19.96

19.96

15.98

17.96

19.97

23,98

27.97

31.96

34.98

15.97

17.97

19.97

23.97

27.98

31.97

34,96

CLAFT

.0030
.0063
.0094
.0090
.0118
.0019
.0029
. 0064
.0050
.0088
.0126
.0178
.0270
.0062
.0084
. 0067
.0095
.0114
.0152
.0222
.0311
.0247
.0274
.0275
.0276
.0310
.0173
.0221
-0259
.0300
.0432
.0550
.0638
.0198
.0234
.0295
.0317
. 0462
.0570
.0667

Table 9. Concluded

(b) Concluded

CDAFT

.0058
.0067
.0075
.0076
.0084
.0069
.0066
.0073
.0071
.0082
.0095
.0118
.0160
.0075
.0076
.0080
.0088
.0097
.0113
.0147
.0190
.0167
.0190
.0200
.0202
.0229
.0126
.0145
.0169
.0219
.0329
.0461
.0574
.0143
.0157
.0191
.0235
.0356
.0494
.0623

CMAFT

. 0064
.0111
.0150
.0146
.0182
.0068
.0077
.0109
.0077
.0117
.0160
.0211
.0314
.0106
.0127
.0096
.0119
.0133
.0178
.0266
.0369
.0282
.0321
.0336
.0344
. 0404
.0234
.0285
.0315
.0335
.0502
.0678
.0829
.0248
.0286
.0353
.0358
.0537
.0707
.0877

CLN

.0351
.0363
.0322
.0249
.0327
.0018
.0039
.0031
.0050
.0177
.0193
.0277
.0301
.0166
.0127
.0193
.0194
.0179
.0263
.0296
.0290
.0210
.0085
.0038
.0142
.0146
. 0008
. 0069
.0138
.0329
.0391
. 0495
.0487
.0169
.0190
.0165
.0231
.0284
.0350
.0322

CDN

.0008
.0078
.0221
.0188
.0104
.0030
.0045
.0036
.0048
.0123
.0158
.0221
.0256
.0216
.0213
.0209
.0206
.0253
.0274
.0344
.0378
.0133
.0080
.0158
.0182
.0230
.0071
.0082
.0135
.0233
.0315
.0461
.0512
.0301
.0317
.0317
.0335
.0366
. 0450
.0478

CMN

.0263
.0335
.0369
.0316
.0434
.0119
.0099
.0087
.0115
.0173
.0174
.0247
.0256
.0328
.0306
.0350
.0353
.0369
. 0406
.0476
. 0458
.0201
.0173
.0226
.0336
.0413
.0115
.0173
.0197
.0328
.0369
.0471
.0493
.0427
.0482
.0439
.0508
.0522
.0613
.0638
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Table 10. Longitudinal Aerodynamic Characteristics for A/B Nozzle With 100/25
A/B Sidewalls and 6, = 0°

MACH

.201
.198
.198
.200
.200
.203
.199
.200
.201
.201
.198
.200
.198
.201
.201
.200
.200
.200
.201
.196
.199
.903
.902
.901
.898
.900
.899
.902
.901
.900
.902
.900
.899
.898
.899
.902
.901
.896
.901
.899
.899
.901

NPR

O AU W

LA UPRPUNESRERRRREFEFFPRIWVWRN=ESEONO NN N NN

.95
.01
.00
.98
.01
.95
.93
.91
.89
.87
.81
.75
.70
.00
.00
.00
.00
.99
.01
.96
.99
.09
.00
.03
.03
.03
.11
.09
.09
.10
.10
.10
.09
.08
.99
.01
.00
.98
.01
.99
.99
.00

ALPHA

.00
.01
.02
.01
-2.02
.00
3.02
6.00
9.02
12.01
15.99
18.01
-2.03
-.01
3.00
6.03
9.01
12.00
16.02
18.00
.00
-.02
-.01
.00
.02
-2.02
-.02
2.98
6.00
9.01
11.99
16.00
18.00
-2.04
-.03
2.98
6.02
9.00
12.01
16.03
17.99

CLT

.0095
.0086
.0106
.0110
0111
.0221
.0105
.0053
.0216
.0349
.0468
.0623
.0723
.0262
.0120
. 0066
.0271
L0461
.0637
.0870
.0995
.0075
.0070
.0076
.0075
.0084
.0070
.0076
.0043
.0061
.0034
.0136
.0284
.0364
.0130
.0095
.0005
.0034
.0127
.0352
.0595
.0717

(a) Total aft end

C(D-F)

.0175
-.0147
-.0452
-.0762
-.1084

.0191

.0180

.0187

.0222

.0288

.0378

.0475

.0543
-.0752
-.0763
-.0759
-.0726
-.0663
-.0582
-.0469
-.0405

.0035
-.0258
-.0518
-.1062
-.1605

.0034

.0036

.0031

.0024

.0027

.0076

.0174

.0249
-.1051
-.1051
-.1056
-.1062
-.1045
-.0990
~-.0867
-.0781

CMT

.0058
.0065
.0122
.0159
.0190
.0139
.0055
.0062
.0199
.0310
.0453
.0618
.0730
.0226
.0161
.0091
.0020
.0143
.0286
. 0466
.0571
.0050
.0075
.0111
.0165
.0224
.0034
.0050
.0057
.0076
.0074
.0031
.0146
.0217
.0156
.0169
.0171
.0193
.0185
.0077
.0067
.0149

CL

.0095
.0086
.0106
.0110
.0112
.0221
.0105
.0054
.0216
.0350
.0469
.0624
.0724
.0230
.0120
.0019
.0175
.0320
.0449
.0620
.0715
.0075
.0070
.0076
.0075
.0085
.0071
.0076
.0043
.0061
.0034
.0136
.0285
.0365
.0091
.0095
.0061
.0079
.0042
L0127
.0296
.0384

CcD

.0175
.0165
.0159
.0144
.0128
.0191
.0180
.0187
.0222
.0288
.0378
L0475
.0543
.0155
.0145
.0149
.0178
.0235
.0308
.0406
.0460
.0035
.0027
.0038
.0033
.0020
.0034
.0036
.0031
.0025
.0028
.0076
.0174
.0249
.0032
.0030
.0025
.0021
.0024
.0072
.0175
.0249

CM

.0058
.0035
.0062
.0069
.0069
.0139
.0055
.0062
.0199
.0310
.0453
.0618
.0730
.0136
.0071
.0000
.0110
.0233
.0377
.0557
.0661
.0050
.0049
.0057
.0057
.0062
.0034
.0050
.0057
.0076
.0074
.0031
.0146
.0217
.0049
.0063
.0064
.0085
.0078
.0030
.0174
.0256
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MACH

.600
.603
.598
.597
.600
.599
.601
.604
.601
.601
.599
.600
.598
.599
.602
.600
.599
.600
.603
.598
.600
.151
. 149
.150
. 150
.152
.151
.151
.151
.150
. 149
. 149
.151
.151
.149
.151
.151
.151
.151
.150
.150
.151

NPR

NNNNNNNNHI—‘I—*HHHF—'HwWND—‘HWWWWWWWWHHHHHHD—'HUWNI\)I—‘

.03
.01
.99
.50
.00
.03
.03
.03
.03
.03
.03
.03
.02
.48
.54
.50
.50
.50
.51
.49
.50
.00
.99
.61
.00
.79
.03
.00
.00
.00
.00
.00
.00
.00
.61
.61
.61
.61
.61
.61
.61
.61

ALPHA

O LN

.00
.02
.02
.02
.02
.89
.02
.00
.01
.00
.00
.99
.00
.83
.02
.98
.03
.00
.01
.98
.01
.00
.01
.02
.02
.02
.53
.03
.99
.99
.98
.99
.99
.00
.55
.02
.98
.99
.01
11.
15.
17.

99
99
99

Table 10. Continued

CLT

.0076
.0058
.0058
.0055
.0051
.0069
.0042
.0015
.0017
.0058
.0106
.0258
.0342
.0103
.0037
.0071
.0180
.0301
.0428
.0697
.0836
.0062
. 0045
.0018
.0026
.0047
.0002
.0271
.0289
.0326
.0344
. 0404
.0534
.0585
.0264
.0181
.0986
.1803
.2752
.3625
.4893
.5489

(a) Concluded

C(D-F)

-1

-1
-1
-1

-1.
-1.

.0049
.0603
.1193
.1501
.2399
.0043
.0041
.0042
.0049
.0059
.0076
.0139
.0191
.1486
.1502
.1489
.1479
. 1455
.1413
.1339
.1267
.0192
.0258
. 5807
. 9654
.6482
.0019
.0085
.0086
.0103
.0150
.0217
.0286
.0366
.6118
-1.
-1.
.5564
.5474
. 5447

5804
5734

5211
4790

CMT

.0040
.0093
.0159
.0190
.0275
.0037
.0031
.0029
.0015
-.0013
-.0059
-.0181
-.0239
.0191
.0184
.0176
.0165
.0130
.0078
.0059
.0127
.0015
.0894
.1525
.1917
.2583
-.0008
-.0109
-.0102
-.0102
-.0128
-.0185
-.0297
-.0377
.1534
.1493
.1501
. 1495
. 1448
.1431
.1312
.1178

CL

.0076
.0058
.0059
.0055
.0052
.0069
.0042
.0015
.0018
.0059
.0106
.0259
.0343
.0055
.0036
.0008
.0019
.0062
.0111
.0274
.0363
.0062
.0044
.0013
.0021
.0040
.0002
.0271
.0289
.0327
.0344
.0405
.0535
.0586
.0178
.0176
.0155
.0151
.0261
.0289
.0432
.0547

ch

.0049
.0040
.0051
.0051
. 0044
.0043
.0041
.0042
.0049
.0059
.0076
.0140
.0191
. 0047
.0045
. 0045
.0051
.0059
.0078
.0143
.0193
.0192
.0018
.0201
.0145
.0125
.0019
.0085
.0086
.0103
.0150
.0217
.0286
.0366
.0167
.0164
.0207
.0190
.0237
.0267
.0356
.0437

CM

.0040
.0034
.0039
.0038
.0035
.0037
.0031
.0029
.0015
.0013
.0059
.0181
.0239
.0042
.0033
.0026
.0015
.0019
.0070
.0209
.0277
.0015
.0042
.0003
.0011
.0019
.0008
.0109
.0102
.0102
.0128
.0185
.0297
.0377
.0014
.0024
.0016
.0010
.0064
.0096
.0227
.0343
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MACH

.201
.198
.198
.200
.200
.203
.199
.200
.201
.201
.198
.200
.198
.201
.201
.200
.200
.200
.201
.196
.199
.903
.902
.901
.898
.900
.899
.902
.901
.900
.902
.900
.899
.898
.899
.902
.901
.896
.901
.899
.899
.901

NPR

(Yol WU, UL

LSS UPSPULVUVERRPRRERPEPERPRRERERERRNVWONPAAS N NN

.95
.01
.00
.98
.01
.95
.93
.91
.89
.87
.81
.75
.70
.00
.00
.00
.00
.99
.01
.96
.99
.09
.00
.03
.03
.03
.11
.09
.09
.10
.10
.10
.09
.08
.99
.01
.00
.98
.01
.99
.99
.00

ALPHA

-.01
.00
.01
.02
.01

-2.02
.00

3.02

6.00

9.02

12.01
15.99
18.01
-2.03

-.01

3.00

6.03

9.01

12.00
16.02
18.00

.00

-.02

-.01
.00
.02

-2.02

-.02

2.98

6.00

9.01

11.99
16.00
18.00
-2.04

-.03

2.98

6.02

9.00

12.01
16.03
17.99

(b) Afterbody and nozzle

CLAFT

.0086
.0084
.0084
.0084
.0085
.0169
.0083
.0038
.0180
.0301
.0403
.0528
.0603
.0169
.0083
.0036
.0181
.0301
. 0406
.0530
.0605
.0033
.0034
.0034
.0035
.0035
.0019
.0034
.0052
.0060
.0049
.0005
.0140
.0194
.0021
.0034
.0052
.0053
.0045
.0001
.0151
.0205

Table 10. Continued

CDAFT

.0084
.0086
.0086
.0086
.0086
.0093
.0087
.0093
.0116
.0151
.0198
.0264
.0308
.0094
.0088
.0093
.0116
.0153
.0198
.0267
.0309
.0058
.0053
.0054
.0053
.0051
.0058
.0059
.0058
.0055
.0057
.0071
.0140
.0186
.0053
.0054
.0052
.0050
.0051
.0067
.0141
.0187

CMAFT

.0083
.0080
.0080
.0080
.0080
.0149
.0079
.0023
.0159
.0287
.0416
.0553
.0637
.0150
.0077
.0023
.0161
.0288
.0418
.0556
.0642
.0028
.0030
.0030
.0031
.0032
.0012
.0030
.0056
.0067
.0072
.0053
.0058
.0100
.0014
.0030
.0056
.0062
.0069
.0045
.0072
.0116

CLN

.0009
.0002
.0022
.0026
.0027
.0052
.0022
.0016
.0036
.0049
.0065
.0096
.0121
.0061
.0037
.0018
.0005
.0018
.0043
.0090
.0109
.0042
.0036
.0042
.0040
.0050
.0052
.0042
.0010
.0000
.0015
.0141
.0144
.0171
.0071
.0061
.0009
.0026
.0003
.0128
.0145
.0179

CDN

.0091
.0079
.0073
.0058
.0041
.0098
.0093
.0094
.0107
.0137
.0181
.0211
.0235
.0061
.0057
.0056
.0062
.0083
.0110
.0139
.0152
.0023
.0026
.0016
.0020
.0031
.0024
.0023
.0026
.0030
.0029
.0005
.0034
.0063
.0021
.0023
.0027
.0029
.0027
.0005
.0034
.0062

CMN

.0024
.0045
.0018
.0011
.0011
.0010
.0024
.0039
.0040
.0023
.0038
.0066
.0092
.0013
.0006
.0024
.0051
.0055
.0041
.0001
.0020
.0021
.0019
.0027
.0025
.0031
.0022
.0020
.0001
.0009
.0002
.0084
.0088
.0117
.0035
.0033
.0008
.0023
.0009
.0075
.0102
.0139

45
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MACH

.600
.603
.598
.597
.600
.599
.601
. 604
.601
.601
.599
.600
.598
.599
.602
.600
.599
.600
.603
.598
.600
.151
. 149
.150
.150
.152
.151
.151
.151
.150
.149
.149
.151
.151
.149
.151
.151
.151
.151
.150
.150
.151

NPR

BB BN BN O DN ke = = et b e 0 0 N e 0 0 0 0 0 0 (0 (0 ket el el b e e = 1 QO BN ND

.03
.01
.99
.50
.00
.03
.03
.03
.03
.03
.03
.03
.02
.48
.54
.50
.50
.50
.51
.49
.50
.00
.99
.61
.00
.79
.03
.00
.00
.00
.00
.00
.00
.00
.61
.61
.61
.61
.61
.61
.61
.61

ALPHA

O Wb

11

.00
.02
.02
.02
.02
.89
.02
.00
.01
.00
.00
.99
.00
.83
.02
.98
.03
.00
.01
.98
.01
.00
.01
.02
.02
.02
.53
.03
.99
.99
.98
.99
.99
.00
.55
.02
.98
.99
.01
.99
15.
17.

99
99

Table 10. Concluded

CLAFT

.0033
.0033
.0033
.0033
.0032
.0037
.0031
.0019
.0005
.0019
.0047
.0147
.0194
.0037
.0031
.0018
.0004
.0020
.0053
.0154
.0206
.0009
.0014
.0024
.0025
.0018
.0022
.0033
.0017
.0016
.0003
.0058
.0143
.0184
.0022
.0019
.0008
.0024
.0007
.0046
.0115
.0157

(b) Concluded

CDAFT

.0055
.0051
.0052
.0052
.0052
.0055
.0054
.0054
.0056
.0061
.0070
.0106
.0131
.0051
.0050
.0051
.0052
.0057
.0067
.0105
.0132
.0076
.0078
.0076
.0075
.0079
.0055
.0051
. 0050
.0047
.0052
.0066
.0098
.0121
.0065
.0061
.0065
. 0060
.0068
.0076
.0104
.0126

CMAFT

.0029
.0030
.0029
.0029
.0029
.0028
.0028
.0024
.0015
.0008
.0038
.0134
.0172
.0029
.0030
.0024
.0015
.0007
.0045
.0143
.0187
.0019
.0012
.0002
.0007
.0003
.0015
.0038
.0025
.0034
.0019
.0044
.0137
.0179
.0023
.0022
.0018
.0045
.0011
.0033
.0104
.0144

CLN

.0042
.0025
.0026
.0023
.0020
.0032
.0011
.0005
.0023
.0039
.0059
.0112
.0149
.0018
.0005
.0010
.0023
.0042
.0058
.0119
.0157
.0053
.0058
.0037
.0046
.0059
.0020
.0304
.0306
.0343
.0341
.0347
.0392
. 0402
.0200
.0195
.0164
.0175
.0254
.0244
.0317
.0390

CDN

.0006
.0011
.0001
.0001
. 0007
.0012
.0012
.0012
.0007
.0002
.0006
.0033
.0059
.0004
.0006
. 0006
.0001
.0003
.0010
.0038
.0061
.0116
.0059
.0125
.0069
.0046
.0074
.0034
.0036
.0056
.0099
.0151
.0188
.0246
.0102
.0103
.0142
.0129
.0169
.0191
.0252
.0311

CMN

.0011
.0005
.0011
.0009
.0006
.0009
.0003
.0005
.0000
.0006
.0021
. 0047
.0067
.0013
. 0004
.0002
.0000
.0013
.0026
. 0066
.0090
. 0004
.0030
.0001
.0004
.0022
.0023
.0147
.0127
.0136
.0147
.0141
.0160
.0199
.0036
.0046
.0034
.0055
.0075
.0062
.0123
.0199
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Table 11. Lateral Aerodynamic Characteristics for A/B Nozzle With 100/25 A/B
Sidewalls and 6, p = 0°

MACH

.201
.198
.198
.200
.200
.203
.199
.200
.201
.201
.198
.200
.198
.201
.201
.200
.200
.200
.201
.196
.199
.903
.902
.901
.898
.900
.899
.902
.901
.900
.902
.900
.899
.898
.899
.902
.901
.896
.901
.899
.899
.901

NPR

O oNWU W

U"-l-\al-\U'!J-\U'IU'lI-‘I—‘O—‘l—'I—'I——‘D—'HH\JUWMHO\O\\IG\\I\J\I\I

.95
.01
.00
.98
.01
.95
.93
.91
.89
.87
.81
.75
.70
.00
.00
.00
.00
.99
.01
.96
.99
.09
.00
.03
.03
.03
.11
.09
.09
.10
.10
.10
.09
.08
.99
.01
.00
.98
.01
.99
.99
.00

ALPHA

.01
.00
.01
.02
.01
.02
.00
.02
.00
.02
.01
.99
.01
.03
.01
.00
.03
.01
.00
.02
.00
.00
.02
.01
.00
.02
.02
.02
.98
.00
.01
.99
.00
.00
.04
.03
.98
.02
.00
.01
.03
.99

CROLLT

.0000
.0000
.0001
.0003
.0004
.0000
.0001
.0001
.0002
.0002
.0001
.0001
.0001
.0003
.0003
. 0004
.0004
.0005
.0005
.0005
.0006
.0002
.0001
.0001
.0004
.0006
.0002
.0002
.0002
.0001
.0001
.0001
.0001
.0002
.0003
.0003
.0003
.0003
.0003
.0003
.0003
.0004

CNT

.0009
.0004
.0021
.0036
.0052
.0009
.0010
.0010
.0009
.0011
.0001
.0004
.0004
.0036
.0037
.0038
.0038
.0042
.0037
.0038
.0038
.0006
.0012
.0007
.0024
.0054
.0006
.0006
.0006
.0003
.0002
.0002
.0000
.0001
.0023
.0023
.0023
.0023
.0021
.0020
.0021
.0023

CYT

.0012
.0009
.0032
.0054
.0076
.0012
.0014
.0020
.0024
.0024
.0020
.0012
.0011
.0054
.0056
.0060
.0063
.0068
.0075
.0076
.0076
.0024
.0002
.0010
.0054
.0096
.0023
.0023
.0025
.0019
.0016
.0017
.0013
.0020
.0050
.0050
.0050
.0052
.0046
.0044
.0047
.0055

CROLL

.0000
.0000
.0001
.0003
.0004
.0000
.0001
.0001
.0002
.0002
.0001
.0001
.0001
.0003
.0003
.0004
.0004
.0005
.0005
.0005
.0006
.0002
.0001
.0001
.0004
.0006
.0002
.0002
.0002
.0001
.0001
.0001
.0001
.0002
.0003
.0003
.0003
.0003
.0003
.0003
.0003
.0004

CN

.0009
.0007
.0007
.0006
.0005
.0009
.0010
.0010
.0009
.0011
.0001
. 0004
.0004
.0005
.0007
.0008
.0007
.0011
.0007
.0008
.0007
.0006
.0000
.0001
.0000
.0000
.0006
.0006
.0006
.0003
.0002
.0002
.0000
.0001
.0001
.0001
.0001
.0001
.0003
. 0004
.0003
.0001

cY

.0012
.0011
.0009
.0007
.0004
.0012
.0014
.0020
.0024
.0024
.0020
.0012
.0011
.0006
.0009
.0013
.0015
.0021
.0027
.0029
.0029
.0024
.0016
.0013
.0013
.0012
.0023
.0023
.0025
.0019
.0016
.0017
.0013
.0020
.0010
.0010
.0010
.0012
. 0006
.0004
.0007
.0015
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MACH

.600
.603
.598
.597
.600
.599
.601
.604
.601
.601
.599
.600
.598
.599
.602
.600
.599
.600
.603
.598
.600
.151
.149
.150
.150
.152
.151
.151
.151
.150
.149
.149
.151
.151
.149
.151
.151
.151
.151
.150
.150
.151

NPR

NNMNNNNNHD—‘D—‘D—'b—‘l—‘l—‘l—ﬂww[\))—'HWMWWWWWWHHHHHHHHUU)NND—‘

.03
.01
.99
.50
.00
.03
.03
.03
.03
.03
.03
.03
.02
.48
.54
.50
.50
.50
.51
.49
.50
.00
.99
.61
.00
.79
.03
.00
.00
.00
.00
.00
.00
.00
.61
.61
.61
.61
.61
.61
.61
.61

ALPHA

.00
.02
.02
.02
.02
-1.89
-.02
3.00
6.01
9.00
12.00
15.99
18.00
-1.83
-.02
2.98
6.03
9.00
12.01
15.98
18.01
.00
.01
.02
.02
.02
-1.53
.03
2.99
5.99
8.98
11.99
15.99
18.00
-1.55
.02
.98
.99
9.01
11.99
15.99
17.99

Table 11. Concluded

CROLLT

.0003
.0001
.0000
.0002
.0007
.0003
.0003
.0003
.0003
.0003
.0003
.0002
.0002
.0001
.0002
.0002
.0002
.0002
.0002
.0003
.0003
.0026
.0015
.0012
.0001
.0025
.0022
.0021
.0020
.0016
.0016
.0015
.0014
.0013
.0018
.0017
.0017
.0020
.0020
.0023
.0022
.0022

CNT

.0003
.0028
.0013
.0005
.0056
.0003
.0003
.0004
.0003
.0001
.0001
.0003
.0002
.0004
.0006
.0005
. 0005
. 0004
.0005
. 0006
.0008
.0042
.0420
.0333
.0162
.0233
.0039
.0043
.0038
.0034
.0033
.0030
.0027
.0026
.0353
.0345
.0344
.0345
.0352
.0355
.0357
.0350

CYT

.0020
.0019
. 0006
.0032
.0107
.0020
.0022
.0023
.0022
.0018
.0021
.0026
.0027
.0033
.0036
.0036
.0036
.0033
.0036
.0041
.0050
.0225
.0294
.0142
.0105
.0649
.0192
.0211
.0192
.0161
.0161
.0143
.0137
.0121
0214
.0210
.0209
.0226
.0244
.0263
.0250
.0246

CROLL

.0003
.0001
. 0000
.0002
.0007
.0003
.0003
.0003
.0003
.0003
.0003
.0002
.0002
.0001
.0002
.0002
.0002
.0002
.0002
.0003
.0003
.0026
.0015
.0012
.0001
.0025
.0022
.0021
.0020
.0016
.0016
.0015
.0014
.0013
.0018
.0017
.0017
.0020
.0020
.0023
.0022
.0022

CN

.0003
.0001
.0001
.0000
.0001
.0003
.0003
.0004
.0003
.0001
.0001
.0003
.0002
.0001
.0001
.0001
.0001
.0000
.0001
.0002
. 0004
.0042
.0028
.0001
.0041
.0018
.0039
.0043
.0038
.0034
.0033
.0030
.0027
.0026
.0012
.0012
.0012
.0016
.0021
.0021
.0019
.0017

CY

.0020
.0012
.0014
.0016
.0017
.0020
.0022
.0023
.0022
.0018
.0021
.0026
.0027
.0018
.0018
.0020
.0020
.0017
.0020
.0025
.0034
.0225
.0217
.0177
.0245
.0177
.0192
.0211
.0192
.0161
.0161
.0143
.0137
.0121
.0112
.0108
.0107
.0089
.0072
.0056
.0072
.0072




Table 12. Longitudinal Aerodynamic Characteristics for Dry Nozzle With 100/25
A/B Sidewalls and 6, p = 0°

(a) Total aft end

= b e s e b e e b e e e e

MACH NPR  ALPHA CLT C(D-F) CMT CL CcD CM

.200 .93 .01 .0075 .0167 . 0050 .0075  .0167 .0050
.200  2.96 .01 .0077 -.0042 .0064 .0077 .0166 .0044
.200  5.01 .02 .0087 -.0246 .0095 .0088 .0171 .0056
.202 7.06 .01 .0103 -.0463 .0137 .0104  .0163 .0080
.200 8.96 .02 .0102 -.0672 .0154 .0102  .0150 .0078
.201 .94 -2.01 .0230 .0184 .0185 .0230 .0184 .0185
.202 .92 .01 .0078 .0171 .0033 .0078 .0171 .0033
. 202 .88 3.01 .0115 .0195 .0142 .0115 .0195 -.0142
.201 .84 6.00 .0311 .0250 -.0329 .0311 .0250 -.0329
.200 .80 9.01 .0424  .0317 .0408 L0424 .0317 -.0408
.200 .77 11.99 .0570  .0401 .0559 .0571 .0401 -.0559
.202 .76 16.02 .0725 .0506 .0704 .0726 .0506 -.0704
.197 .76 18.00 .0810  .0571 .0798 .0811 .0571 -.0798
.202  7.03 -2.01 .0213 -.0446 .0197 .0191 .0177 .0140
.202 7.06 .01 .0088 -.0457 .0129 .0088 .0169 .0071
.201  7.00 3.03 .0094 -.0441 .0027 .0061 .0179 -.0030
.200  6.99 5.99 .0292 -.0408 .0095 .0228 .0209 -.0153
.200  6.98 9.01 .0463 -.0333 .0221 .0366 .0279 -.0278
.201  6.99 12.00 .0649 -.0255 .0378 .0521 .0352 -.0435
.203  7.01 15.99 .0859 -.0146 .0551 .0689  .0450 -.0608
.199  6.98 17.98 .0981 -.0073 .0662 .0791 .0517 -.0720
.899 1.10 -.03 .0085 .0039 . 0045 .0085  .0039 .0045
.900 2.01 -.01 .0090 -.0164 .0082 .0090 .0031 .0062
.897 2.99 -.01 .0081 -.0338 .0091 .0081 .0038 .0055
.896  4.97 .00 -.0077 -.0701 .0123 .0077 .0040 .0054
.902 7.0 .00 .0076 -.1071 .0158 .0076  .0033 .0056
.899 1.11 -2.03 .0069 .0040  .0033 .0069  .0040 .0033
.900 1.10 .03 .0067 .0040  .0038 .0067 .0040 .0038
.903 1.10 3.03 .0016 .0038 .0036 .0015 .0038 .0036
.901 1.10 6.00 .0023 .0036 .0035 -.0022 .0036 .0035
.902 1.10 9.01 .0045 .0047 .0023 .0046  .0047 -.0023
.901 1.10 11.99 .0200 .0099 .0119 .0201 .0100 -.0119
.901 1.09 16.03 .0375 .0215 .0254  .0376  .0215 -.0254
.900 1.06 18.00 .0423 .0277 .0257 .0424  .0278 -.0257
.901  4.99 -2.02 .0093 -.0695 .0102 .0067 .0041 .0034
.900 4.99 .00 -.0072 -.0699 .0120 -.0072 .0038 .0051
.900 5.00 3.03 .0013 -.0702 .0120 -.0026  .0038 .0051
.903 5.01 6.01 .0033 -.0701 .0143 .0044  ,0032 .0074
.899 4.99 8.99 .0107 -.0694 .0123 .0008  .0037 .0054
.900 4.99 12.01 .0322 -.0634 .0010 .0169 .0088 -.0059
.902 5.00 16.03 .0553 -.0507 .0134 .0350 .0202 -.0203
.898  4.99 17.99 L0659 -.0432 .0206 .0432 .0273 -.0275
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MACH

.600
.601
.601
.599
.597
.603
.599
.600
.599
. 600
.599
.600
.599
.599
.601
. 600
.599
.601
.601
.603
.596
.600
.600
.600
.599
.599
.600
.599
.599
.601
.599
.599
.602
.599
.599
.598
.598
.599

NPR

b b= e = U WD W RN W W W W W W W W R b b W N

W wwww

.04
.98
.99
.50
.98
.04
.04
.04
.04
.05
.05
.05
.05
.53
.51
.50
.49
.49
.49
.50
.48
.05
.00
.00
.51
.03
.05
.05
.05
.03
.01
.98
.48
.49
.49
.49
.50
.50

ALPHA

.00
.02
.01
.01
.00
-1.90
.00
2.99
6.00
8.99
12.00
15.99
18.02
-1.88
.03
3.00
6.00
9.00
12.00
16.00
18.01
20.02
20.01
20.00
20.02
20.00
16.66
18.00
19.99
23.98
27.98
31.99
16.82
17.98
19.99
23,98
27.97
31.99

Table 12. Continued

CLT

.0081
.0085
.0070
.0069
. 0056
.0016
.0000
.0017
.0064
.0092
.0145
.0297
.0371
.0060
. 0004
.0072
.0157
.0252
.0356
.0584
.0716
.0395
.0537
.0703
.0782
.1005
L0262
.0311
.0373
.0540
.0722
.0863
.0569
.0650
.0769
.1016
.1307
. 1547

(a) Continued

C(D-F)

.0037
-.0410
-.0813
-.1019
-.1639

.0049

.0048

.0047

.0056

.0065

.0085

.0148

.0195
-.1021
-.1003
-.1000
-.0994
-.0969
-.0943
-.0856
-.0810

.0221
-.0212
-.0581
-.0777
-.1365

.0138

.0166

.0212

.0360

.0566

.0803
-.0862
-.0841
-.0778
-.0605
-.0350
-.0055

CMT

.0043
.0109
.0125
.0145
.0197
.0010
.0016
.0028
.0008
.0026
.0067
.0185
.0234
.0127
.0119
.0117
.0105
.0073
.0026
.0109
.0175
.0251
.0200
.0223
.0213
L0174
.0181
.0210
.0247
.0404
.0633
.0903
.0117
.0153
.0211
.0392
.0689
.1017

CL

.0081
.0085
.0070
.0069
.0056
.0016
.0000
.0017
.0064
.0093
.0146
.0298
.0372
.0025
.0005
.0017
.0048
.0089
.0140
.0299
.0391
.0396
.0389
.0415
.0423
.0431
.0263
.0313
.0374
.0542
.0724
.0865
.0271
.0327
.0411
.0589
.0814
.0991

CD

.0037
.0015
.0027
.0035
.0035
.0049
. 0048
.0047
.0056
.0065
.0085
.0148
.0196
.0044
.0046
. 0046
. 0049
.0061
.0078
.0142
.0195
.0221
.0197
.0214
.0214
.0215
.0138
.0166
.0212
.0360
.0566
.0803
.0128
.0158
.0209
.0360
.0582
.0838

CM

.0043
.0067
.0045
.0046
.0041
.0010
.0016
.0028
.0008
.0026
.0067
.0185
.0234
.0027
.0020
.0018
.0006
.0025
.0072
.0207
.0274
.0251
.0243
.0304
.0312
.0331
.0181
.0210
.0247
.0404
.0633
.0903
.0214
.0252
.0310
.0492
.0788
.1116




Table 12. Continued

(a) Concluded

MACH NPR  ALPHA CLT C(D-F) CMT CL CD CM

.152 1.00 .02 .0205 .0253 -.0121 .0205 .0253 -.0121
.150 2.02 .02 .0184 -.7185 .0717 .0181 -.0065 .0015
.150 2.61 .01 .0310 -1.0952 .0915 .0307 .0002 -.0137
.151 2.98 .01 .0324 -1.3186 .1125 .0322 .0056 -.0134
.151 3.86 .00 .0334 -1.8846 .1652 .0332 .0098 -,0128
149 1.00 -1.32 .0382 .0233 -.0154 .0382 .0233 -.0154
.151  1.00 .03 .0401 .0173 -.0144 .0401 .0173  -.0144
151 1.00 3.03 .0375 .0197 -.0107 .0375  .0197 -.0107
.149 1.00 6.03 .0416 .0187 -.0127 .0416  .0187 -.0127
.150  1.00 8.99 .0485 .0253 -.0162 .0485 .0253 -.0162
.151  1.00 11.99 . 0507 .0274 -.0191 .0508 .0274 -.0191
.150  1.00 16.02 .0571 .0378 -.0281 .0572 .0378 -.0281
.150 1.00 18.00 .0691 .0448 -.0392 .0692 .0448 -.0392
151  2.60 -1.36 -.0003 -1.0686 .0967 .0250 -.0012 -.0058
.151  2.60 .03 .0257 -1.0706 .0980 .0251 -.0028 -.0045
.153 2.60 3.02 .0827 -1.0521 .0959 .0274 -.0019 -.0051
152 2.60 6.04 .1356 -1.0494 .0977 .0245 .0014 -.0038
152 2.60 9.00 .1988 -1.0405 .0929 .0334 .0034 -.0086
.152 2.60 11.99 .2540 -1.0321 .0916 .0339 .0042 -.0102
.151 2.60 15.99 .3450 -1.0177 0774 .0501 .0118 -.0254
151 2.60 18.02 .3886 -1.0041 .0693 .0561 .0181 -.0339
.153  1.00 20.00  .0483 .0210 -.0273 .0484  .0210 -.0273
.150 1.98 20.00 .2804 -.6343 .0596 .0486  .0029 -.0074
.149  2.59 19.98 .4387 -1.0083 .0614 .0651 .0192 -.0436
.150  3.03 19.98 .5402 -1.2708 .0849 .0698  .0234 -.0459
.150  3.81 19.99 .7148 -1.7498 .1327 L0704 .0227 -.0446
.150 2.79 15.99 .3534 -1.1673 .0964 .0199 -.0029 -.0193
.150  1.01 15.99 .0098 .0106 -.0092 .0099 .0106 -.0092
.150  1.00 17.98 .0199 .0121 -.0172 .0200 .0122 -.0172
.151  1.00 19.98 .0368 .0200 -.0261 .0369 .0200 -.0261
.151  1.00 23.98 .0539 .0339 -.0371 .0540 .0339 -.0371
.151  1.00 27.99 .0754 .0563 -.0583 .0756  .0564 -.0583
.153  1.00 31.99 .0924 .0793 -.0798 .0926 .0794 -.0798
.152  1.00 35.10 .0998 .0980 -.0943 .1000 .0981 -.0943
.149  2.63 15.98 .3603 -1.0684 .0755 .0508 .0122 -.0324
.149 2.60 17.98 .4079 -1.0316 L0619  .0675 .0175 -.0440
149 2.60 19.98 <4470 -1.0189 .0600 .0684  .0225 -.0464
152 2.60 23.99 5147 -.9411 L0474  .0804  .0352 -.0552
.150 2.60 27.98 .6086 -.9178 .0329 .0940 .0511 -.0724
.153 2.61 31.98 .6688 -.8252 .0055 .1102 .0698 -.0958
L1522  2.61 34.97 .7293 -.7816 -.0144 .1203 .0895 -.1165
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P e el b et et b pd b b b b b el bl ped ped ped b b

MACH

.200
.200
.200
.202
.200
.201
.202
.202
.201
.200
.200
. 202
.197
.202
.202
.201
.200
.200
.201
.203
.199
.899
.900
.897
.896
.902
.899
. 900
.903
.901
.902
.901
.901
.900
.901
.900
.900
.903
.899
.900
.902
.898

NPR

@~ Lo

AU ESESUVESEPDPREREERERPRPRFRPRREPRLRNNBRENNNRERER AN NN

.93
.96
.01
.06
.96
.94
.92
.88
.84
.80
.77
.76
.76
.03
.06
.00
.99
.98
.99
.01
.98
.10
.01
.99
.97
.01
.11
.10
.10
.10
.10
.10
.09
.06
.99
.99
.00
.01
.99
.99
.00
.99

ALPHA

.01
.01
.02
.01
.02
-2.01
.01
3.01
6.00
9.01
11.99
16.02
18.00
-2.01
.01
3.03
5.99
9.01
12.00
15.99
17.98
-.03
-.01
-.01
.00
.00
-2.03
.03
3.03
6.00
9.01
11.99
16.03
18.00
-2.02
.00
3.03
6.01
8.99
12.01
16.03
17.99

Table 12. Continued

(b) Afterbody and nozzle

CLAFT

-.0083
-.0081
-.0081
-.0082
-.0082
-.0166
-.0077
.0052
.0197
.0304
.0421
. 0547
.0618
~-.0166
-.0078
. 0045
.0192
.0303
L0421
.0545
.0620
-.0031
-.0035
-.0035
-.0034
-.0033
-.0017
-.0031
-.0050
-.0052
-.0030
.0010
.0159
.0199
-.0017
-.0033
-.0048
-.0061
-.0036
.0006
.0158
.0211

CDAFT

.0084
.0084
.0085
.0085
.0086
.0091
.0086
.0092
.0116
.0154
.0201
.0268
.0313
.0092
.0086
.0092
.0116
.0154
.0201
.0267
.0313
.0060
.0057
.0057
.0057
.0056
.0058
.0059
.0059
.0056
.0059
.0075
.0150
.0191
.0056
.0057
.0056
.0052
.0055
.0072
.0149
.0190

CMAFT

.0080
.0078
.0078
.0078
.0078
.0149
.0074
.0037
.0174
.0299
.0436
.0574
.0660
.0148
.0074
.0032
.0171
.0299
.0436
.0574
.0664
.0024
.0029
.0030
.0029
.0028
.0011
.0024
.0052
.0053
.0047
.0033
.0076
.0102
.0010
.0028
.0052
.0067
.0059
.0038
.0072
.0122

CLN

.0008
. 0004
.0006
.0021
.0020
.0064
.0000
.0063
.0114
.0120
.0150
.0179
.0193
.0026
.0010
.0017
.0036
.0063
.0100
.0145
.0171
.0054
.0055
. 0046
.0043
.0043
.0052
.0036
.0034
.0029
.0076
.0191
.0217
.0225
.0050
.0038
.0022
.0017
.0029
.0163
.0192
.0221

CDN

.0083
.0082
.0086
.0078
.0064
.0093
.0086
.0103
.0134
.0163
.0200
.0238
.0258
.0085
.0083
.0086
.0093
.0125
.0150
.0183
.0204
.0021
.0026
.0019
.0018
.0023
.0019
.0019
.0020
.0020
.0012
.0024
.0065
.0087
.0015
.0018
.0018
.0020
.0019
.0017
.0054
.0083

CMN

.0030
.0035
.0022
.0001
.0000
.0036
.0041
.0105
.0155
.0109
.0124
.0129
.0138
.0008
.0003
.0002
.0018
.0021
.0001
.0034
.0056
.0021
.0033
.0025
.0025
.0028
.0023
.0014
.0015
.0018
.0070
.0151
.0179
.0155
.0024
.0023
.0001
.0007
.0005
.0097
.0131
.0153




MACH

.600
.601
.601
.599
.597
.603
.599
.600
.599
.600
.599
.600
.599
.599
.601
.600
.599
.601
.601
.603
.596
.600
.600
.600
.599
.599
.600
.599
.599
.601
.599
.599
.602
.599
.599
.598
.598
.599

NPR

PP UWWRNEREWWWWWWWWE SRR e SR =

W wwww

.04
.98
.99
.50
.98
.04
.04
.04
.04
.05
.05
.05
.05
.53
.51
.50
.49
.49
.49
.50
.48
.05
.00
.00
.51
.03
.05
.05
.05
.03
.01
.98
.48
.49
.49
.49
.50
.50

ALPHA

.00
.02
.01
.01
.00
-1.90
.00
2.99
6.00
8.99
12.00
15.99
18.02
-1.88
.03
3.00
6.00
9.00
12.00
16.00
18.01
20.02
20.01
20.00
20.02
20.00
16.66
18.00
19.99
23.98
27.98
31.99
16.82
17.98
19.99
23.98
27.97
31.99

Table 12. Continued

CLAFT

.0028
.0031
.0032
.0031
.0032
.0033
.0026
.0019
.0002
.0023
.0049
.0148
.0197
.0036
.0027
.0016
.0000
.0022
.0052
.0154
.0204
.0213
.0216
.0220
.0224
.0229
.0144
.0169
.0213
.0345
.0495
.0642
.0154
.0177
.0224
.0363
.0520
.0677

(b) Continued

CDAFT

.0055
.0053
.0054
.0054
.0053
.0054
. 0054
.0053
.0056
.0061
.0070
.0108
.0134
.0053
.0052
.0053
.0055
.0059
.0069
.0108
.0135
.0163
.0162
.0164
.0166
.0168
.0119
.0134
.0163
.0259
.0393
.0563
.0121
.0135
.0166
.0265
.0406
.0586

CMAFT

.0024
.0030
.0031
.0029
.0030
.0023
.0024
.0027
.0008
.0011
.0038
.0134
.0175
.0027
.0023
.0022
.0010
.0010
.0043
.0141
.0185
.0204
.0207
.0216
.0220
.0228
.0146
.0166
.0206
.0351
.0556
.0805
.0159
.0177
.0221
.0377
.0595
.0861

CLN

.0053
.0054
.0038
.0038
.0024
.0016
.0027
.0037
.0062
.0070
.0097
.0149
.0175
.0011
.0022
.0034
.0047
.0067
.0087
.0145
.0187
.0184
.0174
.0194
.0199
.0202
.0120
.0143
.0161
.0196
.0229
.0223
.0118
.0151
.0187
.0226
.0294
.0314

CDN

.0019
.0038
.0026
.0019
.0018
.0005
. 0006
.0007
.0000
.0004
.0016
.0041
.0062
.0009
. 0006
.0007
.0005
.0001
.0009
.0034
.0060
.0058
.0035
.0050
.0048
. 0047
.0019
.0032
.0049
.0102
.0173
.0240
.0007
.0023
.0043
.0094
.0176
.0252

CMN

.0019
.0037
.0014
.0017
.0011
.0014
.0008
.0001
.0015
.0016
.0029
.0051
.0060
. 0000
.0003
.0003
.0004
.0015
.0030
.0066
.0090
.0048
.0036
.0088
.0092
.0102
.0035
. 0044
.0041
.0052
.0077
.0099
.0056
.0075
.0090
.0115
.0194
.0254
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- MACH

.152
.150
.150
.151
.151
.149
.151
.151
.149
.150
.151
.150
.150
.151
.151
.153
.152
.152
.152
.151
.151
.153
.150
. 149
.150
.150
.150
.150
.150
.151
.151
.151
.153
.152
.149
.149
. 149
.152
.150
.153
.152

NPR

NN NN NN MNE R = e NW W R NN NNNINE P R = = 0NN N

.00
.02
.61
.98
.86
.00
.00
.00
.00
.00
.00
.00
.00
.60
.60
.60
.60
.60
.60
.60
.60
.00
.98
.59
.03
.81
.79
.01
.00
.00
.00
.00
.00
.00
.63
.60
.60
.60
.60
.61
.61

ALPHA

.02
.02
.01
.01
.00
-1.32
.03
3.03
6.03
8.99
11.99
16.02
18.00
-1.36
.03
3.02
6.04
9.00
11.99
15.99
18.02
20.00
20.00
19.98
19.98
19.99
15.99
15.99
17.98
19.98
23.98
27.99
31.99
35.10
15.98
17.98
19.98
23.99
27.98
31.98
34.97

Table 12. Concluded

(b) Concluded

CLAFT  CDAFT  CMAFT

.0012 .0068 -.0043
.0022 .0073 -.0056
.0044  .0075 -.0082
.0033 .0076 -.0066
.0039 .0079 -.0063
.0031 .0058  .0030
.0010 .0053 .0011
.0011 .0052 .0026
.0004  .0054  .0023
.0029  .0059 .0002
.0079  .0070 -.0060
.0161 .0106 -.0148
.0224  .0136 -.0218
.0036  .0056 -.0052
.0036 .0058 -.0049
.0059 .0062 -.0068
.0086 .0068 -.0091
.0124  .0083 -.0133
.0128 .0091 -.0138
.0200 .0122 -.0219
.0281 .0163 -.0318
.0198 .0149 -.0203
.0175 .0150 -.0176
.0201 .0163 -.0214
.0198 .0162 -.0219
.0200 .0166 -.0234
.0085 .0113 -.0111
.0082 .0095 -.0097
.0172 .0124 -.0199
.0189  .0140 -.0204
.0267 .0199 -.0278
.0383 .0304 -.0424
.0512 .0439 -.0608
.0560 .0527 -.0703
.0097 .0104 -.0107
.0165 .0129 -.0187
.0191 .0147 -.0214
.0266 .0209 -.0266
.0378  .0311 -.0408
.0500 .0448 -.0595
.0606  .0577 -.0770

CLN

.0193
.0159
.0263
.0288
.0294
.0413
.0410
.0386
.0412
.0457
.0429
.0411
.0468
.0214
.0215
.0214
.0159
.0210
.0210
.0300
.0280
.0286
.0311
. 0450
.0500
.0504
.0114
.0017
.0028
.0180
.0273
.0373
.0414
.0440
.0411
.0510
.0494
.0539
.0562
.0602
.0597

CDN

.0185
.0139
.0073
.0020
.0019
.0175
.0120
.0145
.0133
.0194
.0204
.0272
.0312
.0068
.0085
.0081
.0054
.0049
.0049
. 0004
.0018
.0061
.0121
.0029
.0072
.0060
.0142
.0012
.0003
.0060
.0141
.0260
.0355
.0454
.0018
. 0046
.0078
.0143
.0200
.0250
.0318

CMN

.0078
.0071
.0054
.0069
.0064
.0185
.0155
.0133
.0150
.0164
.0132
.0133
L0174
.0006
.0004
.0017
.0053
.0047
.0037
.0036
.0021
.0070
.0101
.0222
.0240
.0211
.0083
.0005
.0028
.0057
.0092
.0158
.0190
.0241
.0217
.0253
.0250
.0286
.0317
.0363
.0395
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Table 13. Lateral Aerodynamic Characteristics for Dry Nozzle W
Sidewalls and 8, p = 0°

MACH

.200
.200
.200
.202
.200
.201
.202
.202
.201
.200
.200
.202
.197
.202
.202
.201
.200
.200
.201
.203
.199
.899
.900
.897
.896
.902
.899
.900
.903
.901
.902
.901
.901
.900
.901
.900
.900
.903
.899
.900
.902
.898

NPR

@~ N

J»\U'lb«l-\U'\U'lbbb—'b—'D—*HHHHH\J#MMHO\\JC\O\O\\J\J\J

.93
.96
.01
.06
.96
.94
.92
.88
.84
.80
.77
.76
.76
.03
.06
.00
.99
.98
.99
.01
.98
.10
.01
.99
.97
.01
.11
.10
.10
.10
.10
.10
.09
.06
.95
.99
.00
.01
.99
.99
.00
.99

ALPHA

.01
.01
.02
.01
.02
-2.01
.01
3.01
6.00
9.01
11.99
16.02
18.00
-2.01
.01
3.03
5.99
9.01
12.00
15.99
17.98
-.03
-.01
-.01
.00
.00
-2.03
.03
3.03
6.00
9.01
11.99
16.03
18.00
-2.02
.00
3.03
6.01
8.99
12.01
16.03
17.99

CROLLT

.0000
.0000
.0002
.0003
.0004
.0000
.0001
.0002
.0001
.0002
.0001
.0001
.0001
.0003
.0004
. 0004
.0004
.0005
.0004
.0005
.0005
.0002
.0001
.0002
. 0004
.0006
.0002
.0002
.0002
.0002
.0002
.0002
.0002
.0002
.0004
. 0004
.0004
.0004
.0004
. 0004
.0004
.0004

CNT

.0006
.0005
.0019
.0030
.0041
.0005
.0006
.0006
.0003
.0001
.0002
.0001
.0004
.0030
.0032
.0032
.0033
.0033
.0030
.0029
.0027
.0008
.0003
.0000
.0023
.0045
.0007
.0008
.0008
.0005
.0005
.0006
.0003
.0001
.0023
.0024
.0024
.0024
.0021
.0021
.0022
.0023

CYT

.0007
.0009
.0031
.0047
.0061
.0009
.0011
.0013
.0007
.0007
.0006
.0004
.0004
.0047
.0051
.0052
.0053
.0056
.0055
.0050
.0046
.0021
.0008
.0014
.0048
.0078
.0021
.0023
.0023
.0020
.0017
.0019
.0015
.0014
.0048
.0050
.0049
.0052
.0045
.0045
.0047
.0048

CROLL

.0000
.0000
.0002
.0003
. 0004
.0000
.0001
.0002
.0001
.0002
.0001
.0001
.0001
.0003
.0004
. 0004
. 0004
.0005
.0004
. 0005
.0005
.0002
.0001
.0002
.0004
.0006
.0002
.0002
.0002
.0002
.0002
.0002
.0002
.0002
.0004
.0004
.0004
.0004
.0004
.0004
.0004
.0004

ith 100/25 A/B

CN

.0006
.0005
.0007
.0006
.0006
.0005
.0006
.0006
.0003
.0001

-.0002
-.0001
-.0004

.0006
.0008
.0009
.0009
.0009
.0006
.0006
.0003
.0008
.0005
.0000
.0003
.0003
.0007
.0008
.0008
.0005
.0005
.0006
.0003
.0001
.0002
.0003
.0002
.0003
.0000
.0000
.0001
.0002

CY

.0007
.0008
.0012
.0012
.0009
.0009
.0011
.0013
.0007
.0007
.0006
.0004
.0004
.0011
.0015
.0017
.0018
.0021
.0020
.0015
.0011
.0021
.0018
.0012
.0016
.0015
.0021
.0023
.0023
.0020
.0017
.0019
.0015
.0014
.0016
.0018
.0017
.0020
.0012
.0012
.0015
.0016
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MACH

.600
.601
.601
.599
.597
.603
.599
. 600
.599
.600
.599
.600
.599
.599
.601
.600
.599
.601
.601
.603
.596
.600
.600
.600
.599
.599
.600
-599
.599
.601
.599
.599
.602
.599
-599
.598
.598
.599

NPR

W R =

P—‘i—'l—‘HHUWLOLOM)—‘UJWU)WWWUJW!—‘HHHHHHHJ-\

Wwwwww

.04
.98
.99
.50
.98
.04
.04
.04
.04
.05
.05
.05
.05
.53
.51
.50
.49
.49
.49
.50
.48
.05
.00
.00
.51
.03
.05
.05
.05
.03
.01
.98
.48
.49
.49
.49
.50
.50

ALPHA

.00
.02
.01
.01
.00
-1.90
.00
2.99
6.00
8.99
12.00
15.99
18.02
-1.88
.03
3.00
6.00
9.00
12.00
16.00
18.01
20.02
20.01
20.00
20.02
20.00
16.66
18.00
19.99
23.98
27.98
31.99
16.82
17.98
19.99
23.98
27.97
31.99

Table 13. Continued

CROLLT

.0001
.0001
.0001
.0002
.0005
.0003
.0003
.0003
.0003
.0003
.0003
.0003
.0003
.0003
. 0004
.0003
.0003
.0003
.0003
. 0004
. 0004
.0000
.0002
.0000
.0002
. 0005
. 0000
.0000
.0001
.0010
.0016
.0014
.0001
.0001
.0002
.0012
.0019
.0017

CNT

. 0004
.0019
.0002
.0011
.0048
.0009
.0009
.0009
.0008
.0008
.0010
.0006
.0007
.0015
.0015
.0014
.0014
.0013
.0014
.0015
.0016
.0008
.0012
. 0004
.0016
.0052
.0003
.0004
. 0009
.0073
.0126
.0124
.0010
.0012
.0017
.0087
.0141
.0144

CYT

.0008
.0024
.0005
.0024
.0076
.0028
.0026
.0027
.0026
.0026
.0031
.0022
.0025
. 0044
.0042
.0041
.0039
.0036
.0042
. 0043
. 0046
.0022
.0002
.0025
.0043
.0093
.0010
.0013
.0026
.0174
.0272
.0258
.0024
.0032
. 0044
.0205
.0303
.0299

CROLL

.0001
.0001
.0001
.0002
.0005
.0003
.0003
.0003
.0003
.0003
.0003
.0003
.0003
.0003
.0004
.0003
.0003
.0003
.0003
. 0004
. 0004
.0000
.0002
. 0000
.0002
.0005
.0000
.0000
.0001
.0010
.0016
.0014
.0001
.0001
.0002
.0012
.0019
.0017

CN

.0004
.0001
.0002
.0001
.0000
.0009
.0009
.0009
.0008
.0008
.0010
. 0006
. 0007
.0003
.0003
.0003
.0002
.0001
.0003
.0003
. 0004
.0008
. 0007
. 0004
. 0004
. 0004
.0003
.0004
. 0009
.0073
.0126
.0124
. 0002
.0000
.0005
.0075
.0129
.0132

CY

.0008
.0000
.0000
.0003
.0003
.0028
.0026
.0027
.0026
.0026
.0031
.0022
.0025
.0021
.0020
.0019
.0018
.0015
.0020
.0021
.0025
.0022
. 0025
.0020
.0021
.0019
.0010
.0013
. 0026
.0174
.0272
.0258
. 0004
.0010
.0023
.0184
.0281
.0278




MACH

.152
.150
.150
.151
.151
.149
.151
.151
.149
.150
.151
.150
.150
.151
.151
.153
.152
.152
.152
.151
.151
.153
.150
.149
.150
.150
.150
.150
.150
.151
.151
.151
.153
.152
.149
. 149
.149
.152
.150
.153
.152

NPR

NNNMI\JNNHI—‘!—"—‘D—‘HD—‘NWWNHHNMNMNNMNHD—‘!—‘H'—‘P—'H}—‘MNI\JMH

.00
.02
.61
.98
.86
.00
.00
.00
.00
.00
.00
.00
.00
.60
.60
.60
.60
.60
.60
.60
.60
.00
.98
.59
.03
.81
.79
.01
.00
.00
.00
.00
.00
.00
.63
.60
.60
.60
.60
.61
.61

ALPHA

.02
.02
.01
.01
.00
-1.32
.03
3.03
6.03
8.99
11.99
16.02
18.00
-1.36
.03
3.02
6.04
9.00
11.99
15.99
18.02
20.00
20.00
19.98
19.98
19.99
15.99
15.99
17.98
19.98
23.98
27.99
31.99
35.10
15.98
17.98
19.98
23.99
27.98
31.98
34.97

Table 13. Concluded

CROLLT

.0045
.0009
.0023
.0030
.0056
.0028
.0026
.0026
.0024
.0024
.0020
.0023
.0018
.0002
.0000
-.0003
-.0004
-.0006
-.0004
-.0003

-.0008

-.0008
-.0036
-.0020
-.0006
.0009
.0009
.0017
.0018
.0017
.0015
.0022
.0010
.0014
.0008
.0005
.0005
.0007
.0007
.0000
-.0003

CNT

.0073
.0266
.0096
.0031
.0371
.0045
.0047
.0042
.0043
.0042
.0036
.0034
.0030
.0143
.0144
.0144
.0146
.0150
.0152
.0149
.0150
.0001
.0331
.0169
.0013
.0273
.0107
.0007
.0012
.0007
.0006
.0019
.0029
.0029
.0152
.0163
.0161
.0154
.0145
.0186
.0208

CYT

.0305
.0105
.0157
.0301
.0793
.0188
.0200
.0167
.0170
.0168
.0132
.0147
.0113
.0012
.0013
.0030
.0046
.0063
.0064
.0048
.0051
.0002
.0349
.0110
.0100
.0486
.0035
.0026
.0043
.0025
.0023
.0046
.0073
.0059
.0059
.0082
.0081
.0048
.0044
.0159
.0217

CROLL

.0045
.0009
.0023
.0030
.0056
.0028
.0026
.0026
.0024
.0024
.0020
.0023
.0018
.0002
.0000
-.0003
-.0004
-.0006
-.0004
-.0003
-.0008
-.0008
-.0036
-.0020
-.0006
.0009
. 0009
.0017
.0018
.0017
.0015
.0022
.0010
.0014
.0008
.0005
.0005
.0007
.0007
.0000
-.0003

CN

.0073
.0043
.0051
.0037
.0047
.0045
.0047
.0042
.0043
.0042
.0036
.0034
.0030
.0006
.0005
.0002
.0000
.0004
.0006
.0002
.0001
.0001
.0011
.0014
.0025
.0035
.0028
.0007
.0012
.0007
.0006
.0019
.0029
.0029
.0009
.0011
.0008
.0007
.0006
.0043
.0064

cY

.0305
.0265
.0301
.0241
.0257
.0188
.0200
.0167
.0170
.0168
.0132
.0147
.0113
.0135
.0134
.0114
.0099
.0081
.0081
.0097
.0085
.0002
.0036
.0045
.0014
.0028
.0011
.0026
.0043
.0025
.0023
.0046
.0073
.0059
.0078
.0069
.0070
.0097
.0105
.0019
.0075

57
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Figure 2. Model with afterburner power

AR'ANIAL FAST
COLGH | HOTCGhARH

n
1.-84-12,085

nozzles installed in the Langley 16-Foot Transonic Tunnel.
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(a) Nozzles.

Figure 5. Nozzle geometric characteristics. All linear dimensions in inches.
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(b) Sidewall configurations.

Figure 5. Continued.
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Splitter plate

(c) Afterburner power nozzle with 100-percent sidewalls and 6, , = 0°.

Figure 5. Concluded.
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(b) Internal nozzle.

Figure 6. Concluded.
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Figure 7. Effect of cutback sidewalls on A/B nozzle static performance with o = °
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Figure 8. Effect of cutback sidewalls on A/B nozzle static performance with a = 0° and &y p = 15°.
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Figure 10. Effect of cutback sidewalls on total lift coefficient, drag coefficient, and pitching-moment coefficient
(including thrust) with o = 0° and 6, , = 0°.
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Figure 11. Effect of cutback sidewalls on total lift coefficient, drag coeflicient, and pitching-moment coefficient
(including thrust) with a = 0° and 6, , = 15°.
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Figure 14. Effect of nozzle pressure ratio on longitudinal control power and lift effectiveness due to pitch
vectoring with a = 0°.
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Figure 15. Comparison of longitudinal control power from powered and aerodynamic control effectors with
a=0°
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Figure 16. Effect of yaw vectoring by cutback sidewalls on nozzle static performance with a = (° and 6, , = 0°.
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(a) M = 0.15 and 0.60.

Figure 17. Effect of yaw vectoring by cutback sidewalls on total afterbody lateral coefficients (including thrust)

for A/B power nozzle with a = 0° and 4, = 0°.
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Figure 17. Concluded.
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Figure 18. Effect of yaw vectoring by cutback sidewalls on total lateral aerodynamic coefficients (including
thrust) at constant NPR settings with 6, , = 0°.

92




Jet off

Percent sidewall
Right

Left
O 100
O 100

'y

[}

)

a, deg

12

16

100
25

Jet on
NPR = 3.5

1]
i i
)

1]

)]

&

1]

(0]

(b) M = 0.60.

Figure 18. Continued.
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Figure 18. Continued.
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Figure 18. Concluded.
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Figure 19. Effect of NPR on internal static pressure distributions for A/B power nozzle with 100-percent
sidewalls, 6, , = 0°, and a = 0°.
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Figure 20. Effect of NPR on internal static pressure distributions for A/B power nozzle with 100-percent
sidewalls, 8, 5 = 15°, and a = 0°.
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Figure 21. Effect of NPR on internal static pressure distributions for A/B power nozzle with 50-percent
sidewalls, 6, , = 15°, and a = 0°.
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Figure 21. Continued.
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Figure 22. Effect of NPR on internal static pressure distributions for A/B power nozzle with 25-percent
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Figure 22. Continued.
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Figure 24. Effect of NPR on external static pressure distributions at test Mach numbers for A /B power nozzle
with 50-percent sidewalls, 6, , = 0°, and a = 0°.
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Figure 28. Effect of NPR on external static pressure distributions at test Mach numbers for A/B power nozzle
with 25-percent sidewalls, 6, , = 15°, and a = 0°.
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Figure 29. Effect of NPR on external static pressure distributions at M = 0.60 for A/B power nozzle with
cutback sidewalls, 8, p, = 0°, and a = 20°.
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